BSGS这个主要是用来解决这个题:
A^x=B(mod C)(C是质数),都是整数,已知A、B、C求x。
在具体的题目中,C一般是所有可能事件的总数。
解:
设m = ceil(sqrt(C))(ceil为上取整), x = i * m + j
,
那么A^x = (A^m)^i * A^j, (0 <= i < m, 0 <= j < m)
。
然后可以枚举i
,O(sqrt(C))
级别的枚举。
对于一个枚举出来的i
,令D = (A^m)^i
现在问题转化为求D * A^j ≡ B (mod C)
。
如果把A^j
当作一个整体,那么套上exgcd就可以解出来了(而且因为C是质数,A是C的倍数的情况容易特判,除此之外必有
(D, C) = 1
,所以一定有解):exgcd求逆元,可以参考:http://www.cnblogs.com/PJQOOO/p/3873654.html
求出了A^j
,现在的问题就是我怎么知道j
是多少?
先用O(sqrt(C))
的时间,将A^j
全部存进hash表里面。然后只要查表就在O(1)
的时间内知道j
是多少了。
时间: 2024-10-27 01:19:45