classifier

  1. a positive example classified as positive. This is a true positive.
  2. a positive example misclassified as negative. This is a false negative.
  3. a negative example classified as negative. This is a true negative.
  4. a negative example misclassified as positive. This is a false positive.

Here are some metrics you’ll likely come across:

    • true positive rate = TP/(TP+FN) = 1 − false negative rate
    • false positive rate = FP/(FP+TN) = 1 − true negative rate
    • sensitivity = true positive rate
    • specificity = true negative rate
    • positive predictive value = TP/(TP+FP)
    • recall = TP / (TP+FN) = true positive rate
    • precision = TP / (TP+FP)
    • F-score is the harmonic mean of precision and recall: 
    • G-score is the geometric mean of precision and recall: 

from: http://svds.com/post/basics-classifier-evaluation-part-1

时间: 2024-10-10 10:36:14

classifier的相关文章

支持向量机: Maximum Margin Classifier

支持向量机即 Support Vector Machine,简称 SVM .我最开始听说这头机器的名号的时候,一种神秘感就油然而生,似乎把 Support 这么一个具体的动作和 Vector 这么一个抽象的概念拼到一起,然后再做成一个 Machine ,一听就很玄了! 不过后来我才知道,原来 SVM 它并不是一头机器,而是一种算法,或者,确切地说,是一类算法,当然,这样抠字眼的话就没完没了了,比如,我说 SVM 实际上是一个分类器 (Classifier) ,但是其实也是有用 SVM 来做回归

The u32 classifier

The u32 classifier The U32 filter is the most advanced filter available in the current implementation. It entirely based on hashing tables, which make it robust when there are many filter rules. In its simplest form the U32 filter is a list of record

朴素贝叶斯分类器的应用 Naive Bayes classifier

一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工人 脑震荡  头痛 建筑工人 感冒  打喷嚏 教师 感冒  头痛 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患上感冒的概率有多大? 根据贝叶斯定理: P(A|B) = P(B|A) P(A) / P(B) 可得 P(感冒|打喷嚏x建筑工人)  = P(打喷嚏x建筑工人|感冒)

OpenCV Machine Learning 之正态贝叶斯分类器源代码分析(Normal Bayes Classifier)

1.  CvNormalBayesClassifier的 类 定 义 在ml.hpp中有以下类定义: [cpp] view plaincopyprint? class CV_EXPORTS_W CvNormalBayesClassifier : public CvStatModel { public: CV_WRAP CvNormalBayesClassifier(); virtual ~CvNormalBayesClassifier(); CvNormalBayesClassifier( co

PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)

介绍朴素贝叶斯分类器的文章已经很多了.本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解. 一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较高的情况.虽然朴素贝叶斯分类器很简单,但是它确经常比一些复杂的方法表现还好. 为了简单阐述贝叶斯分类的基本原理,我们使用上图所示的例子来说明.作为先验,我们知道一个球要么是红球要么是绿球.我们的任务是当有新的输入(New Cases)时,我们给出新输入的物体的类别(红或者绿).这是贝叶斯分类器的典型

classifier in maven

http://maven.apache.org/plugins/maven-deploy-plugin/examples/deploying-with-classifiers.html Beside the main artifact there can be additional files which are attached to the Maven project. Such attached filed can be recognized and accessed by their c

机器学习之&&SVM支持向量机入门:Maximum Margin Classifier

概率论只不过是把常识用数学公式表达了出来. --拉普拉斯 0. 前言 这是一篇SVM的入门笔记,来自我对PlusKid.JerryLead.July等大神文章的拜读心得,说是心得还不如说是读文笔记,希望在自己理解的层面上给予SVM这个伟大的机器学习算法概要介绍,让更多的热爱机器学习的伙伴们进入到SVM的世界.PS:文章会以问答的形式为主要结构. 1.概念 1.1.什么是SVM? 支持向量机即 Support Vector Machine,简称 SVM .(第一次接触SVM是在阿里大数据竞赛的时候

学习笔记TF036:实现Bidirectional LSTM Classifier

双向循环神经网络(Bidirectional Recurrent Neural Networks,Bi-RNN),Schuster.Paliwal,1997年首次提出,和LSTM同年.Bi-RNN,增加RNN可利用信息.普通MLP,数据长度有限制.RNN,可以处理不固定长度时序数据,无法利用历史输入未来信息.Bi-RNN,同时使用时序数据输入历史及未来数据,时序相反两个循环神经网络连接同一输出,输出层可以同时获取历史未来信息. Language Modeling,不适合Bi-RNN,目标是通过前

OpenCV Machine Learning 之 正态贝叶斯分类器 (Normal Bayes Classifier)

OpenCV Machine Learning 之 正态贝叶斯分类器 (Normal Bayes Classifier)

classifier.cc-recv() [ns2.35]

1 void Classifier::recv(Packet* p, Handler*h)//original 2 { 3 NsObject* node = find(p); 4 if (node == NULL) { 5 /* 6 * XXX this should be "dropped" somehow. Right now, 7 * these events aren't traced. 8 */ 9 Packet::free(p); 10 return; 11 } 12 13