题目
给定两个字符串,求出在两个字符串中各取出一个子串使得这两个子串相同的方案数。两个方案不同当且仅当这两
个子串中有一个位置不同。
输入格式
两行,两个字符串s1,s2,长度分别为n1,n2。1 <=n1, n2<= 200000,字符串中只有小写字母
输出格式
输出一个整数表示答案
输入样例
aabb
bbaa
输出样例
10
题解
先考虑暴力怎么做
我们枚举两个串的各自一个后缀suffix(i)和suffix(j)
则他们对答案的贡献是LCP(suffix(i),suffix(j))
如此得到一个\(O(n^3)\)的算法
当然如果你知道后缀数组,可以\(O(1)\)求LCP,可以优化到\(O(n^2)\)
当然如果你知道后缀数组的套路,用一个单调栈扫一遍height[]可以做到\(O(nlogn)\)【主要复杂度在求后缀数组】
具体这样:
我们知道,两个后缀之间的LCP是他们之间height的最小值
如果给出一个位置的后缀,想求这个位置之前所有的后缀与这个位置的LCP之和之类的东西,由于求最小值是一路过去的,所以前面的后缀的LCP不会比后面的大,所以整体是单调不下降的,可以用单调栈处理
最后我们只需要分A、B串各用单调栈扫两次统计出答案就可以了
#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<‘ ‘; puts("");
using namespace std;
const int maxn = 400005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == ‘-‘) flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - ‘0‘; c = getchar();}
return out * flag;
}
int sa[maxn],rank[maxn],height[maxn],t1[maxn],t2[maxn],bac[maxn],n,m;
char s[maxn];
int len;
LL ans;
void getSA(){
int *x = t1,*y = t2; m = 256;
for (int i = 0; i <= m; i++) bac[i] = 0;
for (int i = 1; i <= n; i++) bac[x[i] = s[i]]++;
for (int i = 1; i <= m; i++) bac[i] += bac[i - 1];
for (int i = n; i; i--) sa[bac[x[i]]--] = i;
for (int k = 1; k <= n; k <<= 1){
int p = 0;
for (int i = n - k + 1; i <= n; i++) y[++p] = i;
for (int i = 1; i <= n; i++) if (sa[i] - k > 0) y[++p] = sa[i] - k;
for (int i = 0; i <= m; i++) bac[i] = 0;
for (int i = 1; i <= n; i++) bac[x[y[i]]]++;
for (int i = 1; i <= m; i++) bac[i] += bac[i - 1];
for (int i = n; i; i--) sa[bac[x[y[i]]]--] = y[i];
swap(x,y);
p = x[sa[1]] = 1;
for (int i = 2; i <= n; i++)
x[sa[i]] = (y[sa[i]] == y[sa[i - 1]] && y[sa[i] + k] == y[sa[i - 1] + k] ? p : ++p);
if (p >= n) break;
m = p;
}
for (int i = 1; i <= n; i++) rank[sa[i]] = i;
for (int i = 1,k = 0; i <= n; i++){
if (k) k--;
int j = sa[rank[i] - 1];
while (s[i + k] == s[j + k]) k++;
height[rank[i]] = k;
}
}
int st[maxn],cnt[maxn],top;
LL cal[maxn];
void solve(){
for (int i = 1; i <= n; i++){
if (!height[i]) {top = 0; continue;}
int tot = sa[i - 1] <= len ? 1 : 0;
while (top && st[top] > height[i]) tot += cnt[top--];
if (tot) st[++top] = height[i],cnt[top] = tot;
cal[top] = cal[top - 1] + (LL)st[top] * (LL)cnt[top];
if (sa[i] > len) ans += cal[top];
}
top = 0;
for (int i = 1; i <= n; i++){
if (!height[i]) {top = 0; continue;}
int tot = sa[i - 1] > len ? 1 : 0;
while (top && st[top] > height[i]) tot += cnt[top--];
if (tot) st[++top] = height[i],cnt[top] = tot;
cal[top] = cal[top - 1] + (LL)st[top] * (LL)cnt[top];
if (sa[i] <= len) ans += cal[top];
}
}
int main(){
scanf("%s",s + 1); len = strlen(s + 1);
s[len + 1] = ‘#‘;
scanf("%s",s + len + 2);
n = strlen(s + 1);
getSA();
solve();
cout << ans << endl;
return 0;
}
原文地址:https://www.cnblogs.com/Mychael/p/8469118.html
时间: 2024-11-06 07:07:20