前向传播: 前向传播就是求特征图的过程 通常x和w有四个维度[编号,深度,高度,宽度] 反向传播: 先来复习一下反向传播的知识: 反向传播回来的是梯度,也就是偏导数 反向传播力有一个链式法则:对于反向传播(反着看),本层要往后面一层穿的的偏导=本层自身的偏导×上一层传过来的偏导 红色代表反向传播,绿色代表正向传播 out = wx+b out对w求倒数:(wx+b)'=x 那么dw = dout·x 那么换到矩阵之后我的反向传播就可以是dout与x的内积 对于卷积层的反向传播: 每一个dout都
1 神经网络模型 以下面神经网络模型为例,说明神经网络中正向传播和反向传播过程及代码实现 1.1 正向传播 (1)输入层神经元\(i_1,i_2\),输入层到隐藏层处理过程 \[HiddenNeth_1 = w_1i_1+w_2i_2 + b_1\] \[HiddenNeth_2 = w_3i_1+w_4i_2 + b_1\] \[h_1 = sigmoid(HiddenNeth_1)\] \[h_2 = sigmoid(HiddenNeth_2)\] (2)隐藏层:神经元\(h_1,h_2\)
背景 反向传播(Backpropagation)是训练神经网络最通用的方法之中的一个,网上有很多文章尝试解释反向传播是如何工作的,可是非常少有包括真实数字的样例,这篇博文尝试通过离散的数据解释它是如何工作的. Python实现的反向传播 你能使用Python来实现反向传播,我以前在this Github repo上实现了反向传播算法. 反向传播的可视化 显示神经网络学习时相互作用的可视化,检查我的Neural Network visualization. 另外的资源 假设你发现这个教程对你实用而
直观理解反向传播 反向传播算法是用来求那个复杂到爆的梯度的. 上一集中提到一点,13000维的梯度向量是难以想象的.换个思路,梯度向量每一项的大小,是在说代价函数对每个参数有多敏感. 如上图,我们可以这样里理解,第一个权重对代价函数的影响是是第二个的32倍. 我们来考虑一个还没有被训练好的网络.我们并不能直接改动这些激活值,只能改变权重和偏置值.但记住,我们想要输出层出现怎样的变动,还是有用的. 我们希望图像的最后分类结果是2,我们期望第3个输出值变大,其余输出值变小,并且变动的大小应该与现在值
下面要说的基本都是<动手学深度学习>这本花书上的内容,图也采用的书上的 首先说的是训练误差(模型在训练数据集上表现出的误差)和泛化误差(模型在任意一个测试数据集样本上表现出的误差的期望) 模型选择 验证数据集(validation data set),又叫验证集(validation set),指用于模型选择的在train set和test set之外预留的一小部分数据集 若训练数据不够时,预留验证集也是一种luxury.常采用的方法为K折交叉验证.原理为:把train set分割成k个不重合
正向传播 正向传播的计算图 通常绘制计算图来可视化运算符和变量在计算中的依赖关系.下图绘制了本节中样例模型正向传播的计算图,其中左下角是输入,右上角是输出.可以看到,图中箭头方向大多是向右和向上,其中方框代表变量,圆圈代表运算符,箭头表示从输入到输出之间的依赖关系. 反向传播 训练深度学习模型 在训练深度学习模型时,正向传播和反向传播之间相互依赖.一方面,正向传播的计算可能依赖于模型参数的当前值,而这些模型参数是在反向传播的梯度计算后通过优化算法迭代的而这些当前值是优化算法最近一次根据反向传播算
上一章中我们遗留了一个问题,就是在神经网络的学习过程中,在更新参数的时候,如何去计算损失函数关于参数的梯度.这一章,我们将会学到一种快速的计算梯度的算法:反向传播算法. 这一章相较于后面的章节涉及到的数学知识比较多,如果阅读上有点吃力的话也可以完全跳过这一章,把反向传播当成一个计算梯度的黑盒即可,但是学习这些数学知识可以帮助我们更深入的理解神经网络. 反向传播算法的核心目的是对于神经网络中的任何weight或bias计算损失函数$C$关于它们的偏导数$\frac{\partial C}{\par
为何实现一个BP神经网络? “What I cannot create, I do not understand” — Richard Feynman, February 1988 实现一个BP神经网络的7个步骤 选择神经网络 结构 随机 初始化权重 实现 前向传播 实现 成本函数 $J(\Theta)$ 实现反向传播算法并计算 偏微分 $\frac{\partial}{\partial\Theta_{jk}^{(i)}}J(\Theta)$ 使用 梯度检查 并在检查后关闭 使用梯度下降或其它优
作者:韩小雨 类别:①反向传播算法 ②反向传播模型 反向传播算法(英:Backpropagation algorithm,简称:BP算法) 算法简介:是一种监督学习算法,常被用来训练多层感知机. 于1974年,Paul Werbos[1]首次给出了如何训练一般网络的学习算法,而人工神经网络只是其中的特例.不巧的,在当时整个人工神经网络社群中却无人知晓Paul所提出的学习算法.直到80年代中期,BP算法才重新被David Rumelhart.Geoffrey Hinton及Ronald Will