GCC 中 -L、-rpath和-rpath-link的区别

GCC 中 -L、-rpath和-rpath-link的区别

来源 http://blog.csdn.net/q1302182594/article/details/42102961

关于这3个参数的说明,有不少资料,但是看完了还是觉得模糊,分不清它们的区别。本文将用实验的方法去探讨这3个参数的区别。

1、三个.c文件

1.1 world.c

  1. #include<stdio.h>
  2. void world(void) {
  3. printf("world.\n");
  4. }

1.2 hello.c

  1. #include <stdio.h>
  2. void world(void);
  3. void hello(void) {
  4. printf("hello\n");
  5. world();
  6. }

1.3 test.c

  1. void main(void) {
  2. hello();
  3. }

2、生成动态库

参照《Linux静态库与动态库制作》,将hello.c和world.c分别生成动态库

  1. ubuntu $ gcc -c hello.c world.c
  2. ubuntu $ gcc -shared -o libhello.so hello.o
  3. ubuntu $ gcc -shared -o libworld.so world.o

这时,生成的文件及其依赖如下图:

由上图可见,libhello.so和libworld都依赖于linux-gate.so.1、libc.so.6以及/lib/ld-linux.so.2,并且这3个库的路径都以及硬编码进libhello.so和libworld.so中了(=>右边的部分)。

然而,虽然libhello.so中调用了libworld.so的函数,但是在上图中并没有显示出此关系。为了达到使libhello.so依赖于libworld.so的目的,在生成libhello.so时要链接到libworld.so:

  1. ubuntu $ gcc -shared -o libworld.so world.o -lhello -L .

此时,再使用ldd查看libhello.so的依赖:


    由上图可见,此时libhello.so已经依赖于libworld.so。

3、编译test.c

3.1 -L

由于test.c直接依赖于libhello.so,因此使用-lhello -L

  1. ubuntu $ gcc test.c -lhello -L .

结果如下图:

由上图可见已经在-L指定的路径找打了libhello.so,只是libhello.so还需要libworld.so。虽然它都在同一目录下,但是还是没有办法自动找到libworld.so。

那么,能不能使用-lworld将libworld.so也一并链接到test.c中呢?下面做一个尝试:

  1. ubuntu $ gcc test.c -lhello -lworld -L .

没有报错,成功生成a.out。

执行a.out并且使用ldd查看a.out的依赖:

由上图可见,虽然使用-lworld参数将libworld.so链接到了a.out中,但是上面只显示a.out依赖于libhello.so。由于找不到libhello.so(=> not found)的路径,因此需要设置环境变量LD_LIBRARY_PATH

  1. ubuntu export LD_LIBRARY_PATH=/home/liyihai/documents

再次执行a.out并使用ldd命令查看a.out的依赖库:

由上图可见,libhello.so已经通过LD_LIBRARY_PATH环境变量找到,并且libworld.so也出现在a.out的依赖中!

结论:-L指定的是链接时的库路径,生成的可执行文件在运行时库的路径由LD_LIBRARY_PATH环境变量指定。

3.2 -rpath

根据3.1第1张图的提示,由于libhello.so依赖于libworld.so,可以只用-rpath或者-rpath-link来指定。这里先使用-rpath。

先清空LD_LIBRARY_PATH环境变量,然后重新编译test.c并且带上-rpath参数:

  1. ubuntu $ export LD_LIBRARY_PATH=
  2. ubuntu $ gcc test.c -lhello -L . -Wl,-rpath .

执行a.out,并且使用ldd命令查看a.out的依赖:

由上图可见,虽然没有明确指出链接libworld.so,但是libworld.so还是出现在a.out的依赖中。

另外,虽然LD_LIBRARY_PATH已经清空,但是a.out还是可以执行,这说明库的路径已经被编译进a.out中了。需要注意的是,libhello.so和libworld.so的路径都是通过-rpath指定的路径找到的。

3.2.1 实验1

这时候,如果libhello.so和libworld.so的路径改变了,将会发生什么情况呢?下面做一个实验。

创建一个lib_tmp目录,然后将libhello.so和libworld.so移动进这个目录。

  1. ubuntu $ mdir lib_tmp
  2. ubuntu $ mv libhello.so lib_tmp/
  3. ubuntu $ mv libworld.so lib_tmp/

这时再执行a.out时,提示找不动态库,使用ldd命令查看a.out的库路径:

由上图红色圈部分可见,libhello.so的路径是not found的,并且libworld.so没有出现在其中。这和3.1的情况是相同的。

究其原因,就是要先找到libhello.so再去找libworl.so,因为是libhello.so依赖于libworld.so,而不是a.out依赖于libworld.so。

由此可见,使用了-rpath参数指定库的路径后,生成的可执行文件的依赖库路径并非就固定不变了。而是执行时先从-rpath指定的路径去找依赖库,如果找不到,还是会报not fund。

那么,这时候,LD_LIBRARY_PATH对a.out是否还有影响呢?下面将LD_LIBRARY_PATH设为当前libhello.so和libworld.so所在的路径

  1. ubuntu $ export LD_LIBRARY_PATH=./lib_tmp

再次执行a.out,并且使用ldd查看此时a.out的依赖库路径:

由上图可见LD_LIBRARY_PATH还是起作用的!由上图可见,和使用-rpath指定路径的效果是一样的。

3.2.2 实验2

将LD_LIBRARY_PATH清空,然后将libhello.so移动到lib_tmp中,而libworld.so则留在documents目录中。

执行a.out,并且使用ldd查看此时a.out的依赖库:

由上图可见,找不到libhello.so。这时,再指定LD_LIBRARY_PATH的路径为libhello.so所在的路径:

  1. ubuntu $ export LD_LIBRARY_PATH=./lib_tmp/

再次执行a.out,并且使用ldd查看其依赖库:

由上图可见,一切又恢复了正常。此时,libhello.so是通过LD_LIBRARY_PATH找到的,而libworld.so则是通过-rpath指定的路径找到的。

3.2.3 回顾

其实,经过测试,在3.1小节中,如果先指定LD_LIBRARY_PATH的值为libhello.so和libworld.so所在的路径,然后再编译test.c(执行3.1节的第1条编译命令),是可以成功编译的,并不会报3.1小节第1张图的那种错误。也就是说,LD_LIBRARY_PATH不仅指定可执行文件的库路径,还指定了库所依赖于其它库的路径。

3.2.4 结论

并非指定-rpath参数后,就抛弃LD_LIBRARY_PATH环境变量,只是多了个可选的依赖库路径而已。

3.3 -rpath-link

先将LD_LIBRARY_PATH的值清空,然后将libworld.so移动到lib_tmp目录中,而libhello.so则留在documents目录中,使用以下命令对test.c进行编译:

  1. ubuntu $ gcc test.c -lhello  -L . -Wl,-rpath-link ./lib_tmp

执行a.out并且使用ldd查看a.out的依赖库:

找不到 libhello.so,这在预料之中。下面指定LD_LIBRARY_PATH的值为libhello.so的路径,然后在执行a.out,并且查看a.out的依赖:

由上图可见,libhello.so已经通过LD_LIBRARY_PATH找到,但是libworld.so由于没有在LD_LIBRARY_PATH指定的路径中,而且编译时a.out又没有包含库的路径,因此找不到。这

对比3.2.2可以得出结论:-rpath和-rpath-link都可以在链接时指定库的路径;但是运行可执行文件时,-rpath-link指定的路径就不再有效(链接器没有将库的路径包含进可执行文件中),而-rpath指定的路径还有效(因为链接器已经将库的路径包含在可执行文件中了。)

最后,不管使用了-rpath还是-rpath-link,LD_LIBRARY_PATH还是有效的。

4、ld命令的man手册

4.1  -rpath=dir

  1. Add a directory to the runtime library search path.  This is used when linking an ELF executable with shared objects.
  2. All -rpath arguments are concatenated and passed to the runtime linker, which uses them to locate shared objects at
  3. runtime.  The -rpath option is also used when locating shared objects which are needed by shared objects explicitly
  4. included in the link; see the description of the -rpath-link option.  If -rpath is not used when linking an ELF
  5. executable, the contents of the environment variable "LD_RUN_PATH" will be used if it is defined.
  6. The -rpath option may also be used on SunOS.  By default, on SunOS, the linker will form a runtime search path out of
  7. all the -L options it is given.  If a -rpath option is used, the runtime search path will be formed exclusively using
  8. the -rpath options, ignoring the -L options.  This can be useful when using gcc, which adds many -L options which may
  9. be on NFS mounted file systems.
  10. For compatibility with other ELF linkers, if the -R option is followed by a directory name, rather than a file name, it
  11. is treated as the -rpath option.

4.2  -rpath-link=dir

  1. When using ELF or SunOS, one shared library may require another.  This happens when an "ld -shared" link includes a
  2. shared library as one of the input files.
  3. When the linker encounters such a dependency when doing a non-shared, non-relocatable link, it will automatically try
  4. to locate the required shared library and include it in the link, if it is not included explicitly.  In such a case,
  5. the -rpath-link option specifies the first set of directories to search.  The -rpath-link option may specify a sequence
  6. of directory names either by specifying a list of names separated by colons, or by appearing multiple times.
  7. This option should be used with caution as it overrides the search path that may have been hard compiled into a shared
  8. library. In such a case it is possible to use unintentionally a different search path than the runtime linker would do.

4.3  search paths

  1. The linker uses the following search paths to locate required shared libraries:
  2. 1.  Any directories specified by -rpath-link options.
  3. 2.  Any directories specified by -rpath options.  The difference between -rpath and -rpath-link is that directories
  4. specified by -rpath options are included in the executable and used at runtime, whereas the -rpath-link option is
  5. only effective at link time. Searching -rpath in this way is only supported by native linkers and cross linkers
  6. which have been configured with the --with-sysroot option.
  7. 3.  On an ELF system, for native linkers, if the -rpath and -rpath-link options were not used, search the contents of
  8. the environment variable "LD_RUN_PATH".
  9. 4.  On SunOS, if the -rpath option was not used, search any directories specified using -L options.
  10. 5.  For a native linker, search the contents of the environment variable "LD_LIBRARY_PATH".
  11. 6.  For a native ELF linker, the directories in "DT_RUNPATH" or "DT_RPATH" of a shared library are searched for shared
  12. libraries needed by it. The "DT_RPATH" entries are ignored if "DT_RUNPATH" entries exist.
  13. 7.  The default directories, normally /lib and /usr/lib.
  14. 8.  For a native linker on an ELF system, if the file /etc/ld.so.conf exists, the list of directories found in that
  15. file.

参考资料

[1]动态库的链接和链接选项-L,-rpath-link,-rpath

[2]ld的-rpath与-rpath-link选项

原文地址:https://www.cnblogs.com/lsgxeva/p/8257784.html

时间: 2024-10-29 14:25:38

GCC 中 -L、-rpath和-rpath-link的区别的相关文章

gcc -L、-Wl,-rpath, -Wl,-rpath-link的区别

现要在目录 mainDir 下编译库libmain.so, 但是其 ---依赖于---> libsub.so,sub.so在目录 mainDir / subDir 下,且subDir不在LD_LIBRARY_PATH以及环境变量中. 现有如下执行: 1. gcc -share -o libmain.so  main.o 此命令可编译并链接通过,利用ldd libmain.so时没有发现有对libsub.so的依赖,但是ldd -r libmain.so时会发现会有sub库中的函数出现undefi

gcc参数-l传递顺序错误导致`undefined reference&#39;的一点小结

刚才编译一个pthread的单文件程序, 使用的命令行是: gcc -o thread1 -lpthread thread1.c 结果报错: 1 $ gcc -o thread1 -lpthread thread1.c 2 /tmp/ccNqs6Bh.o: In function `main': 3 thread1.c:(.text+0x49): undefined reference to `pthread_create' 4 thread1.c:(.text+0x5f): undefined

使用gcc的-l参数的时候,怎么查找函数所在库的位置

键盘输入一个整数n,接着输入n个实型数,分别求取这n个实型数的平方根.代码如下: 使用gcc编译,报错如下: 原因是没有链接数学库,加上-lm即可,-l是链接,m是数学库(math.h) 那我们怎么知道sqrt在哪个库呢? centos7下使用: nm -Do /lib64/*.so|grep sqrt 结果为: /lib64/libm-2.17.so就是sqrt的动态链接库的位置, 找到后,只要gcc的-l参数后面加上上图中lib后面的那个字母即可,libm-2.17.so中m表示库名,2.1

GCC中初始化函数是如何被处理的?

本文译至: http://gcc.gnu.org/onlinedocs/gccint/Initialization.html 如我们所知,在GCC通过给代码追加__attribute__((constructor))和__attribute__((destructor))的方式可以追加初始函数和终止函数, 这篇文章介绍了GCC内部是如何实现上述处理的. 简单的说,就是在最经常的情况下,初始函数会被追加到.ctor section中,.init会调用对应的函数处理这些初始函数.终止情况类似. --

C语言之gcc中支持的内存对齐指令

1:gcc中支持但不推荐使用的指令 #pragma pack() :取消内存对齐访问 #pragma pack(n) (n=1/2/4/8):按n字节对齐 #pragma pack(2)  struct mystruct1 { int a; char b; short c; } struct mystruct2 { int a;; double b; short c; }  #pragma pack() 以上这部分内容就是按2字节对齐了. 分析: (1)#pragma是用来指挥编译器,或者说设置

C++中L和_T()之区别(转)

C++中L和_T()之区别 分类: C/C++2011-01-12 11:45 2878人阅读 评论(1) 收藏 举报 c++编译器apic 字符串前面加L表示该字符串是Unicode字符串._T是一个宏,如果项目使用了Unicode字符集(定义了UNICODE宏),则自动在字符串前面加上L,否则字符串不变.因此,Visual C++里边定义字符串的时候,用_T来保证兼容性.VC支持ascii和unicode两种字符类型,用_T可以保证从ascii编码类型转换到unicode编码类型的时候,程序

GCC中的堆栈保护机制

以堆栈溢出为代表的缓冲区溢出已成为最为普遍的安全漏洞,由此引发的安全问题比比皆是.我们知道攻击者利用堆栈溢出漏洞时,通常会破坏当前的函数栈.在gcc中,通过编译选项可以添加 函数栈的保护机制,通过重新对局部变量进行布局来实现,达到监测函数栈是否非破坏的目的. gcc中有3个与堆栈保护相关的编译选项 -fstack-protector:启用堆栈保护,不过只为局部变量中含有 char 数组的函数插入保护代码. -fstack-protector-all:启用堆栈保护,为所有函数插入保护代码. -fn

GCC中的弱符号与强符号

我们经常在编程中碰到一种情况叫符号重复定义.多个目标文件中含有相同名字全局符号的定义,那么这些目标文件链接的时候将会出现符号重复定义的错误.比如我们在目标文件A和目标文件B都定义了一个全局整形变量global,并将它们都初始化,那么链接器将A和B进行链接时会报错: [html] view plain copy 1 b.o:(.data+0x0): multiple definition of `global' 2 a.o:(.data+0x0): first defined here 这种符号的

struts2 中chain、redirect、redirect-action的区别

struts2 中chain.redirect.redirectaction的区别 文章摘要: 一.Chain Result:这个result调用另外的一个action,连接自己的拦截器栈和result. ?actionName (默认) - 被调用的action的名字?namespace - 被调用的action的名称空间. 如果名称空间为空,这默认为当前名称空间?method - 用于指定目标action的另一个方法被调用. 如果空,默认为excute方法Redirect Action Re