主要内容:
一、IO模型介绍
二、阻塞IO
三、非阻塞IO
四、多路复用
1?? IO模型介绍
1 何为同步、异步、阻塞和非阻塞
同步:
#所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不会返回。按照这个定义,其实绝大多数函数都是同步调用。但是一般而言,我们在说同步、异步的时候,特指那些需要其他部件协作或者需要一定时间完成的任务。 #举例: #1. multiprocessing.Pool下的apply #发起同步调用后,就在原地等着任务结束,根本不考虑任务是在计算还是在io阻塞,总之就是一股脑地等任务结束
异步:
#异步的概念和同步相对。当一个异步功能调用发出后,调用者不能立刻得到结果。当该异步功能完成后,通过状态、通知或回调来通知调用者。如果异步功能用状态来通知,那么调用者就需要每隔一定时间检查一次,效率就很低(有些初学多线程编程的人,总喜欢用一个循环去检查某个变量的值,这其实是一 种很严重的错误)。如果是使用通知的方式,效率则很高,因为异步功能几乎不需要做额外的操作。至于回调函数,其实和通知没太多区别。 #举例: #1. multiprocessing.Pool().apply_async() #发起异步调用后,并不会等待任务结束才返回,相反,会立即获取一个临时结果(并不是最终的结果,可能是封装好的一个对象)。
阻塞:
#阻塞调用是指调用结果返回之前,当前线程会被挂起(如遇到io操作)。函数只有在得到结果之后才会将阻塞的线程激活。有人也许会把阻塞调用和同步调用等同起来,实际上他是不同的。对于同步调用来说,很多时候当前线程还是激活的,只是从逻辑上当前函数没有返回而已。 #举例: #1. 同步调用:apply一个累计1亿次的任务,该调用会一直等待,直到任务返回结果为止,但并未阻塞住(即便是被抢走cpu的执行权限,那也是处于就绪态); #2. 阻塞调用:当socket工作在阻塞模式的时候,如果没有数据的情况下调用recv函数,则当前线程就会被挂起,直到有数据为止。
非阻塞:
#非阻塞和阻塞的概念相对应,指在不能立刻得到结果之前也会立刻返回,同时该函数不会阻塞当前线程。
小结:
#1. 同步与异步针对的是函数/任务的调用方式:同步就是当一个进程发起一个函数(任务)调用的时候,一直等到函数(任务)完成,而进程继续处于激活状态。而异步情况下是当一个进程发起一个函数(任务)调用的时候,不会等函数返回,而是继续往下执行当,函数返回的时候通过状态、通知、事件等方式通知进程任务完成。 #2. 阻塞与非阻塞针对的是进程或线程:阻塞是当请求不能满足的时候就将进程挂起,而非阻塞则不会阻塞当前进程
2、IO模型分类
一般分为五类:
* blocking IO # 阻塞IO * nonblocking IO # 非阻塞IO * IO multiplexing # 多路复用 * signal driven IO # 信号驱动IO * asynchronous IO # 异步IO # signal driven IO(信号驱动IO)在实际中并不常用,所以主要介绍其余四种IO Model。
IO发生时涉及的对象和步骤:
以read为例,它主要涉及两个系统对象,一个调用这个IO的process \(or thread\),另一个就是系统内核\(kernel\)。
当一个read操作发生时,该操作会经历两个阶段:
1)等待数据准备 (Waiting for the data to be ready) 2)将数据从内核拷贝到进程中(Copying the data from the kernel to the process)
2?? 阻塞IO(blocking IO )
在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:
当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据。
对于network io来说,很多时候数据在一开始还没有到达(比如,还没有收到一个完整的UDP包),
这个时候kernel就要等待足够的数据到来。
而在用户进程这边,整个进程会被阻塞。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,
然后kernel返回结果,用户进程才解除block的状态,重新运行起来。所以,blocking IO的特点就是在IO执行的两个阶段 (等待数据和拷贝数据两个阶段)都被block了。
几乎所有的程序员第一次接触到的网络编程都是从listen\(\)、send\(\)、recv\(\) 等接口开始的, 使用这些接口可以很方便的构建服务器/客户机的模型。然而大部分的socket接口都是阻塞型的。如下图 ps: 所谓阻塞型接口是指系统调用(一般是IO接口)不返回调用结果并让当前线程一直阻塞 只有当该系统调用获得结果或者超时出错时才返回。
实际上,除非特别指定,几乎所有的IO接口 ( 包括socket接口 ) 都是阻塞型的。这给网络编程带来了一个很大的问题,
如在调用recv(1024)的同时,线程将被阻塞,在此期间,线程将无法执行任何运算或响应任何的网络请求。
一个简单的解决方案是:
在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程), 这样任何一个连接的阻塞都不会影响其他的连接。
实例如下:
分两部分,客户端(client.py)和服务端(server.py)
client.py
#!/usr/bin/env python3 #-*- coding:utf-8 -*- # write by congcong from socket import * def talk(): client = socket(AF_INET,SOCK_STREAM) client.connect((‘127.0.0.1‘,8806)) while True: mes = input(‘>>>:‘).strip() if not mes:continue client.send(mes.encode(‘utf-8‘)) data = client.recv(1024) print(data.decode(‘utf-8‘)) client.close() if __name__ == ‘__main__‘: talk()
server.py
#!/usr/bin/env python3 #-*- coding:utf-8 -*- # write by congcong from socket import * from threading import Thread,currentThread def talk(conn): while True: try: data = conn.recv(1024) if not data:break print(data.decode(‘utf-8‘)) conn.send((‘%s hello‘%currentThread().getName()).encode(‘utf-8‘)) except ConnectionResetError: break conn.close() def server(ip,port): server = socket(AF_INET,SOCK_STREAM) server.bind((ip,port)) server.listen(5) while True: print(‘staring...‘) conn,addres = server.accept() print(addres) t = Thread(target=talk,args=(conn,)) t.start() server.close() if __name__ == ‘__main__‘: server(‘127.0.0.1‘,8806)
但存在问题下述问题:
虽然实现了并发,即实际则回避了阻塞的问题(并未解决),思路是:让主线程接收客户端的链接,而当每收到了一个链接,就新建一个线程,负责收发消息,互不影响,并没有监测IO,每个线程遇到阻塞IO时,仍然阻塞,但并不影响其他线程,从而实现并发。但会随着客户端链接的增多,服务端开的线程则越来越多,浪费资源,而为了避免机器崩溃。而设置线程池(适应问题规模较小的情况),限制并发数目,效率降低,但保证了机器健康运行。 所以,至此,单线程下的IO阻塞问题仍未解决。
3?? 非阻塞IO(nonblocking IO)
Linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:
对流程图理解如下:
当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是用户就可以在本次到下次再发起read询问的时间间隔内做其他事情,或者直接再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存(这一阶段仍然是阻塞的),然后返回。
也就是说非阻塞的recvform系统调用调用之后,进程并没有被阻塞,内核马上返回给进程,如果数据还没准备好,此时会返回一个error。进程在返回之后,可以干点别的事情,然后再发起recvform系统调用。重复上面的过程, 循环往复的进行recvform系统调用。这个过程通常被称之为轮询。轮询检查内核数据,直到数据准备好,再拷贝数据到进程,进行数据处理。需要注意,拷贝数据整个过程,进程仍然是属于阻塞的状态。
原文地址:https://www.cnblogs.com/schut/p/9033933.html