机器学习大数据数据挖掘推荐系统相关资源

原文:http://www.kuqin.com/shuoit/20151130/349205.html

书籍

视频

QQ群

  • 机器学习&模式识别 246159753
  • 数据挖掘机器学习 236347059
  • 推荐系统 274750470

Github

推荐系统

博客

文章

论文

《推荐系统实战》引用

【CIKM 2012 Best Stu Paper】Incorporating Occupancy into Frequent Pattern Mini.pdf

【CIKM 2012 poster】A Latent Pairwise Preference Learning Approach for Recomme.pdf

【CIKM 2012 poster】An Effective Category Classification Method Based on a Lan.pdf

【CIKM 2012 poster】Learning to Rank for Hybrid Recommendation.pdf

【CIKM 2012 poster】Learning to Recommend with Social Relation Ensemble.pdf

【CIKM 2012 poster】Maximizing Revenue from Strategic Recommendations under De.pdf

【CIKM 2012 poster】On Using Category Experts for Improving the Performance an.pdf

【CIKM 2012 poster】Relation Regularized Subspace Recommending for Related Sci.pdf

【CIKM 2012 poster】Top-N Recommendation through Belief Propagation.pdf

【CIKM 2012 poster】Twitter Hyperlink Recommendation with User-Tweet-Hyperlink.pdf

【CIKM 2012 short】Automatic Query Expansion Based on Tag Recommendation.pdf

【CIKM 2012 short】Graph-Based Workflow Recommendation- On Improving Business .pdf

【CIKM 2012 short】Location-Sensitive Resources Recommendation in Social Taggi.pdf

【CIKM 2012 short】More Than Relevance- High Utility Query Recommendation By M.pdf

【CIKM 2012 short】PathRank- A Novel Node Ranking Measure on a Heterogeneous G.pdf

【CIKM 2012 short】PRemiSE- Personalized News Recommendation via Implicit Soci.pdf

【CIKM 2012 short】Query Recommendation for Children.pdf

【CIKM 2012 short】The Early-Adopter Graph and its Application to Web-Page Rec.pdf

【CIKM 2012 short】Time-aware Topic Recommendation Based on Micro-blogs.pdf

【CIKM 2012 short】Using Program Synthesis for Social Recommendations.pdf

【CIKM 2012】A Decentralized Recommender System for Effective Web Credibility .pdf

【CIKM 2012】A Generalized Framework for Reciprocal Recommender Systems.pdf

【CIKM 2012】Dynamic Covering for Recommendation Systems.pdf

【CIKM 2012】Efficient Retrieval of Recommendations in a Matrix Factorization .pdf

【CIKM 2012】Exploring Personal Impact for Group Recommendation.pdf

【CIKM 2012】LogUCB- An Explore-Exploit Algorithm For Comments Recommendation.pdf

【CIKM 2012】Metaphor- A System for Related Search Recommendations.pdf

【CIKM 2012】Social Contextual Recommendation.pdf

【CIKM 2012】Social Recommendation Across Multiple Relational Domains.pdf

【COMMUNICATIONS OF THE ACM】Recommender Systems.pdf

【ICDM 2012 short___】Multiplicative Algorithms for Constrained Non-negative M.pdf

【ICDM 2012 short】Collaborative Filtering with Aspect-based Opinion Mining- A.pdf

【ICDM 2012 short】Learning Heterogeneous Similarity Measures for Hybrid-Recom.pdf

【ICDM 2012 short】Mining Personal Context-Aware Preferences for Mobile Users.pdf

【ICDM 2012】Link Prediction and Recommendation across Heterogenous Social Networks.pdf

【IEEE Computer Society 2009】Matrix factorization techniques for recommender .pdf

【IEEE Consumer Communications and Networking Conference 2006】FilmTrust movie.pdf

【IEEE Trans on Audio, Speech and Laguage Processing 2010】Personalized music .pdf

【IEEE Transactions on Knowledge and Data Engineering 2005】Toward the next ge.pdf

【INFOCOM 2011】Bayesian-inference Based Recommendation in Online Social Network.pdf

【KDD 2009】Learning optimal ranking with tensor factorization for tag recomme.pdf

【SIGIR 2009】Learning to Recommend with Social Trust Ensemble.pdf

【SIGIR 2012】Adaptive Diversification of Recommendation Results via Latent Fa.pdf

【SIGIR 2012】Collaborative Personalized Tweet Recommendation.pdf

【SIGIR 2012】Dual Role Model for Question Recommendation in Community Questio.pdf

【SIGIR 2012】Exploring Social Influence for Recommendation - A Generative Mod.pdf

【SIGIR 2012】Increasing Temporal Diversity with Purchase Intervals.pdf

【SIGIR 2012】Learning to Rank Social Update Streams.pdf

【SIGIR 2012】Personalized Click Shaping through Lagrangian Duality for Online.pdf

【SIGIR 2012】Predicting the Ratings of Multimedia Items for Making Personaliz.pdf

【SIGIR 2012】TFMAP-Optimizing MAP for Top-N Context-aware Recommendation.pdf

【SIGIR 2012】What Reviews are Satisfactory- Novel Features for Automatic Help.pdf

【SIGKDD 2012】 A Semi-Supervised Hybrid Shilling Attack Detector for Trustwor.pdf

【SIGKDD 2012】 RecMax- Exploiting Recommender Systems for Fun and Profit.pdf

【SIGKDD 2012】Circle-based Recommendation in Online Social Networks.pdf

【SIGKDD 2012】Cross-domain Collaboration Recommendation.pdf

【SIGKDD 2012】Finding Trending Local Topics in Search Queries for Personaliza.pdf

【SIGKDD 2012】GetJar Mobile Application Recommendations with Very Sparse Datasets.pdf

【SIGKDD 2012】Incorporating Heterogenous Information for Personalized Tag Rec.pdf

【SIGKDD 2012】Learning Personal+Social Latent Factor Model for Social Recomme.pdf

【VLDB 2012】Challenging the Long Tail Recommendation.pdf

【VLDB 2012】Supercharging Recommender Systems using Taxonomies for Learning U.pdf

【WWW 2012 Best paper】Build Your Own Music Recommender by Modeling Internet R.pdf

【WWW 2013】A Personalized Recommender System Based on User‘s Informatio.pdf

【WWW 2013】Diversified Recommendation on Graphs-Pitfalls, Measures, and Algorithms.pdf

【WWW 2013】Do Social Explanations Work-Studying and Modeling the Effects of S.pdf

【WWW 2013】Generation of Coalition Structures to Provide Proper Groups‘.pdf

【WWW 2013】Learning to Recommend with Multi-Faceted Trust in Social Networks.pdf

【WWW 2013】Multi-Label Learning with Millions of Labels-Recommending Advertis.pdf

【WWW 2013】Personalized Recommendation via Cross-Domain Triadic Factorization.pdf

【WWW 2013】Profile Deversity in Search and Recommendation.pdf

【WWW 2013】Real-Time Recommendation of Deverse Related Articles.pdf

【WWW 2013】Recommendation for Online Social Feeds by Exploiting User Response.pdf

【WWW 2013】Recommending Collaborators Using Keywords.pdf

【WWW 2013】Signal-Based User Recommendation on Twitter.pdf

【WWW 2013】SoCo- A Social Network Aided Context-Aware Recommender System.pdf

【WWW 2013】Tailored News in the Palm of Your HAND-A Multi-Perspective Transpa.pdf

【WWW 2013】TopRec-Domain-Specific Recommendation through Community Topic Mini.pdf

【WWW 2013】User‘s Satisfaction in Recommendation Systems for Groups-an .pdf

【WWW 2013】Using Link Semantics to Recommend Collaborations in Academic Socia.pdf

【WWW 2013】Whom to Mention-Expand the Diffusion of Tweets by @ Recommendation.pdf

Recommender+Systems+Handbook.pdf

tutorial.pdf

各个领域的推荐系统

图书

  • Amazon
  • 豆瓣读书
  • 当当网

新闻

电影

  • Netflix
  • Jinni
  • MovieLens
  • Rotten Tomatoes
  • Flixster
  • MTime

音乐

  • 豆瓣电台
  • Lastfm
  • Pandora
  • Mufin
  • Lala
  • EMusic
  • Ping
  • 虾米电台
  • Jing.FM

视频

  • Youtube
  • Hulu
  • Clciker

文章

  • CiteULike
  • Google Reader
  • StumbleUpon

旅游

  • Wanderfly
  • TripAdvisor

社会网络

  • Facebook
  • Twitter

综合

  • Amazon
  • GetGlue
  • Strands
时间: 2024-10-13 12:17:26

机器学习大数据数据挖掘推荐系统相关资源的相关文章

大数据-实时推荐系统最主流推荐系统itemCF和userCF视频教程(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

基于大数据技术推荐系统算法案例实战视频教程(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

电商大数据项目-推荐系统实战之推荐算法(三)

电商大数据项目-推荐系统实战(一)环境搭建以及日志,人口,商品分析http://blog.51cto.com/6989066/2325073电商大数据项目-推荐系统实战之推荐算法http://blog.51cto.com/6989066/2326209电商大数据项目-推荐系统实战之实时分析以及离线分析http://blog.51cto.com/6989066/2326214 (七)推荐系统常用算法协同过滤算法协同过滤算法(Collaborative Filtering:CF)是很常用的一种算法,

大数据的一些相关知识介绍

什么是大数据 大数据(big data),指无法在一定时间范围内用常规软件工具进行捕捉.管理和处理的数据集合,是需要新处理模式才能具有更强的决策力.洞察发现力和流程优化能力的海量.高增长率和多样化的信息资产. 大数据的定义是4Vs:Volume.Velocity.Variety.Veracity.用中文简单描述就是大.快.多.真. Volume -- 数据量大 随着技术的发展,人们收集信息的能力越来越强,随之获取的数据量也呈爆炸式增长.例如百度每日处理的数据量达上百PB,总的数据量规模已经到达E

大数据算法->推荐系统常用算法之基于内容的推荐系统算法

港真,自己一直非常希望做算法工程师,所以自己现在开始对现在常用的大数据算法进行不断地学习,今天了解到的算法,就是我们生活中无处不在的推荐系统算法. 其实,向别人推荐商品是一个很常见的现象,比如我用了一个好的商品,向朋友安利之类的.在以前广告系统不发达的时候,我们也是靠口口相传来进行商品的推广.那么为什么,现在推荐系统变的非常重要了呢?,在以前,我们的商品不像现在的物品一样琳琅满目,我们有时间,可以把商品都浏览一遍在进行选择,因为我们都想选择所有商品中最好的,而现在,由于资源的众多,我们不会用大把

下载基于大数据技术推荐系统实战教程(Spark ML Spark Streaming Kafka Hadoop Mahout Flume Sqoop Redis)

地址:http://pan.baidu.com/s/1c2tOtwc  密码:yn2r 82课高清完整版,转一播放码. 互联网行业是大数据应用最前沿的阵地,目前主流的大数据技术,包括 hadoop,spark等,全部来自于一线互联网公司.从应用角度讲,大数据在互联网领域主要有三类应用:搜索引擎(比如百度,谷歌等),广告系统(比如百度凤巢,阿里妈妈等)和推荐系统(比如阿里巴巴天猫推荐,优酷视频推荐等). 本次培训以商业实战项目作为驱动来学习大数据技术在推荐系统项目中的应用.使得学员能够亲身体会大数

电商大数据项目-推荐系统实战

开源项目,请勿用于任何商业用途.源代码地址:https://github.com/asdud/Bigdata_project 本项目是基于Spark MLLib的大数据电商推荐系统项目,使用了scala语言和java语言.基于python语言的推荐系统项目会另外写一篇博客.在阅读本博客以前,需要有以下基础:1.linux的基本命令2.至少有高中及以上的数学基础.3.至少有java se基础,会scala语言和Java EE更佳(Jave EE非必需,但是可以帮助你更快理解项目的架构).4.有gi

大数据生态圈中相关原理(1)

MapReduce 原理 客户端任务到jobTracker, jobTracker分发任务到map和reduce. map从datasplit 中获取数据区,根据客户端的相关业务逻辑生成(K,V)对,数据先缓存到环形缓冲区,直到达到设定上限(默认为80%),然后会写入到磁盘上.写入磁盘之前,会进行分区排序. reduce 会根据各自分区copy自己所需要的数据,先进行合并,排序,然后执行reduce的逻辑,接着会将结果输出的HDFS上part-...-00000 shuffle相关原理,以及参数

大数据-实时推荐系统最主流推荐系统itemCF和userCF

推荐系统的分类: 基于应用领域分类:电子商务推荐,社交好友推荐,搜索引擎推荐,信息内容推荐基于设计思想:基于协同过滤的推荐,基于内容的推荐,基于知识的推荐,混合推荐基于使用何种数据:基于用户行为数据的推荐,基于用户标签的推荐,基于社交网络数据,基于上下文信息(时间上下文,地点上下文等等) 协同过滤: 协同过滤的基本思想(基于用户): 协同过滤一般是在海量的用户中发掘出一小部分和你品味比较类似的,在协同过滤中,这些用户成为邻居,然后根据他们喜欢的其他东西组织成为一个排序的目录作为推荐给你 核心问题