OpenMP并行编程应用—加速OpenCV图像拼接算法

OpenMP是一种应用于多处理器程序设计的并行编程处理方案,它提供了对于并行编程的高层抽象。仅仅须要在程序中加入简单的指令,就能够编写高效的并行程序,而不用关心详细的并行实现细节。减少了并行编程的难度和复杂度。也正由于OpenMP的简单易用性,它并不适合于须要复杂的线程间同步和相互排斥的场合。

OpenCV中使用Sift或者Surf特征进行图像拼接的算法。须要分别对两幅或多幅图像进行特征提取和特征描写叙述,之后再进行图像特征点的配对。图像变换等操作。不同图像的特征提取和描写叙述的工作是整个过程中最耗费时间的,也是独立 执行的,能够使用OpenMP进行加速。

下面是不使用OpenMP加速的Sift图像拼接原程序:

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "omp.h"

using namespace cv;

//计算原始图像点位在经过矩阵变换后在目标图像上相应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri);

int main(int argc, char *argv[])
{
	float startTime = omp_get_wtime();

	Mat image01 = imread("Test01.jpg");
	Mat image02 = imread("Test02.jpg");
	imshow("拼接图像1", image01);
	imshow("拼接图像2", image02);

	//灰度图转换
	Mat image1, image2;
	cvtColor(image01, image1, CV_RGB2GRAY);
	cvtColor(image02, image2, CV_RGB2GRAY);

	//提取特征点
	SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值
	vector<KeyPoint> keyPoint1, keyPoint2;
	siftDetector.detect(image1, keyPoint1);
	siftDetector.detect(image2, keyPoint2);

	//特征点描写叙述,为下边的特征点匹配做准备
	SiftDescriptorExtractor siftDescriptor;
	Mat imageDesc1, imageDesc2;
	siftDescriptor.compute(image1, keyPoint1, imageDesc1);
	siftDescriptor.compute(image2, keyPoint2, imageDesc2);

	float endTime = omp_get_wtime();
	std::cout << "不使用OpenMP加速消耗时间: " << endTime - startTime << std::endl;
	//获得匹配特征点。并提取最优配对
	FlannBasedMatcher matcher;
	vector<DMatch> matchePoints;
	matcher.match(imageDesc1, imageDesc2, matchePoints, Mat());
	sort(matchePoints.begin(), matchePoints.end()); //特征点排序
													//获取排在前N个的最优匹配特征点
	vector<Point2f> imagePoints1, imagePoints2;
	for (int i = 0; i < 10; i++)
	{
		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
	}

	//获取图像1到图像2的投影映射矩阵,尺寸为3*3
	Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
	Mat adjustMat = (Mat_<double>(3, 3) << 1.0, 0, image01.cols, 0, 1.0, 0, 0, 0, 1.0);
	Mat adjustHomo = adjustMat*homo;

	//获取最强配对点在原始图像和矩阵变换后图像上的相应位置,用于图像拼接点的定位
	Point2f originalLinkPoint, targetLinkPoint, basedImagePoint;
	originalLinkPoint = keyPoint1[matchePoints[0].queryIdx].pt;
	targetLinkPoint = getTransformPoint(originalLinkPoint, adjustHomo);
	basedImagePoint = keyPoint2[matchePoints[0].trainIdx].pt;

	//图像配准
	Mat imageTransform1;
	warpPerspective(image01, imageTransform1, adjustMat*homo, Size(image02.cols + image01.cols + 110, image02.rows));

	//在最强匹配点左側的重叠区域进行累加。是衔接稳定过渡。消除突变
	Mat image1Overlap, image2Overlap; //图1和图2的重叠部分
	image1Overlap = imageTransform1(Rect(Point(targetLinkPoint.x - basedImagePoint.x, 0), Point(targetLinkPoint.x, image02.rows)));
	image2Overlap = image02(Rect(0, 0, image1Overlap.cols, image1Overlap.rows));
	Mat image1ROICopy = image1Overlap.clone();  //复制一份图1的重叠部分
	for (int i = 0; i < image1Overlap.rows; i++)
	{
		for (int j = 0; j < image1Overlap.cols; j++)
		{
			double weight;
			weight = (double)j / image1Overlap.cols;  //随距离改变而改变的叠加系数
			image1Overlap.at<Vec3b>(i, j)[0] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[0] + weight*image2Overlap.at<Vec3b>(i, j)[0];
			image1Overlap.at<Vec3b>(i, j)[1] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[1] + weight*image2Overlap.at<Vec3b>(i, j)[1];
			image1Overlap.at<Vec3b>(i, j)[2] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[2] + weight*image2Overlap.at<Vec3b>(i, j)[2];
		}
	}
	Mat ROIMat = image02(Rect(Point(image1Overlap.cols, 0), Point(image02.cols, image02.rows)));  //图2中不重合的部分
	ROIMat.copyTo(Mat(imageTransform1, Rect(targetLinkPoint.x, 0, ROIMat.cols, image02.rows))); //不重合的部分直接衔接上去
	namedWindow("拼接结果", 0);
	imshow("拼接结果", imageTransform1);
	imwrite("D:\\拼接结果.jpg", imageTransform1);
	waitKey();
	return 0;
}

//计算原始图像点位在经过矩阵变换后在目标图像上相应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri)
{
	Mat originelP, targetP;
	originelP = (Mat_<double>(3, 1) << originalPoint.x, originalPoint.y, 1.0);
	targetP = transformMaxtri*originelP;
	float x = targetP.at<double>(0, 0) / targetP.at<double>(2, 0);
	float y = targetP.at<double>(1, 0) / targetP.at<double>(2, 0);
	return Point2f(x, y);
}

图像一:

图像二:

拼接结果 :

在我的机器上不使用OpenMP平均耗时 4.7S。

使用OpenMP也非常easy。VS 内置了对OpenMP的支持。在项目上右键->属性->配置属性->C/C++->语言->OpenMP支持里选择是:

之后在程序中增加OpenMP的头文件“omp.h”就能够了:

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp"
#include "omp.h"

using namespace cv;

//计算原始图像点位在经过矩阵变换后在目标图像上相应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri);

int main(int argc, char *argv[])
{
	float startTime = omp_get_wtime();

	Mat image01, image02;
	Mat image1, image2;
	vector<KeyPoint> keyPoint1, keyPoint2;
	Mat imageDesc1, imageDesc2;
	SiftFeatureDetector siftDetector(800);  // 海塞矩阵阈值
	SiftDescriptorExtractor siftDescriptor;
	//使用OpenMP的sections制导指令开启多线程
#pragma omp parallel sections
	{
#pragma omp section
		{
			image01 = imread("Test01.jpg");
			imshow("拼接图像1", image01);
			//灰度图转换
			cvtColor(image01, image1, CV_RGB2GRAY);
			//提取特征点
			siftDetector.detect(image1, keyPoint1);
			//特征点描写叙述。为下边的特征点匹配做准备
			siftDescriptor.compute(image1, keyPoint1, imageDesc1);
		}
#pragma omp section
		{
			image02 = imread("Test02.jpg");
			imshow("拼接图像2", image02);
			cvtColor(image02, image2, CV_RGB2GRAY);
			siftDetector.detect(image2, keyPoint2);
			siftDescriptor.compute(image2, keyPoint2, imageDesc2);
		}
	}
	float endTime = omp_get_wtime();
	std::cout << "使用OpenMP加速消耗时间: " << endTime - startTime << std::endl;

	//获得匹配特征点。并提取最优配对
	FlannBasedMatcher matcher;
	vector<DMatch> matchePoints;
	matcher.match(imageDesc1, imageDesc2, matchePoints, Mat());
	sort(matchePoints.begin(), matchePoints.end()); //特征点排序
	//获取排在前N个的最优匹配特征点
	vector<Point2f> imagePoints1, imagePoints2;
	for (int i = 0; i < 10; i++)
	{
		imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
		imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
	}

	//获取图像1到图像2的投影映射矩阵。尺寸为3*3
	Mat homo = findHomography(imagePoints1, imagePoints2, CV_RANSAC);
	Mat adjustMat = (Mat_<double>(3, 3) << 1.0, 0, image01.cols, 0, 1.0, 0, 0, 0, 1.0);
	Mat adjustHomo = adjustMat*homo;

	//获取最强配对点在原始图像和矩阵变换后图像上的相应位置。用于图像拼接点的定位
	Point2f originalLinkPoint, targetLinkPoint, basedImagePoint;
	originalLinkPoint = keyPoint1[matchePoints[0].queryIdx].pt;
	targetLinkPoint = getTransformPoint(originalLinkPoint, adjustHomo);
	basedImagePoint = keyPoint2[matchePoints[0].trainIdx].pt;

	//图像配准
	Mat imageTransform1;
	warpPerspective(image01, imageTransform1, adjustMat*homo, Size(image02.cols + image01.cols + 110, image02.rows));

	//在最强匹配点左側的重叠区域进行累加,是衔接稳定过渡,消除突变
	Mat image1Overlap, image2Overlap; //图1和图2的重叠部分
	image1Overlap = imageTransform1(Rect(Point(targetLinkPoint.x - basedImagePoint.x, 0), Point(targetLinkPoint.x, image02.rows)));
	image2Overlap = image02(Rect(0, 0, image1Overlap.cols, image1Overlap.rows));
	Mat image1ROICopy = image1Overlap.clone();  //复制一份图1的重叠部分
	for (int i = 0; i < image1Overlap.rows; i++)
	{
		for (int j = 0; j < image1Overlap.cols; j++)
		{
			double weight;
			weight = (double)j / image1Overlap.cols;  //随距离改变而改变的叠加系数
			image1Overlap.at<Vec3b>(i, j)[0] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[0] + weight*image2Overlap.at<Vec3b>(i, j)[0];
			image1Overlap.at<Vec3b>(i, j)[1] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[1] + weight*image2Overlap.at<Vec3b>(i, j)[1];
			image1Overlap.at<Vec3b>(i, j)[2] = (1 - weight)*image1ROICopy.at<Vec3b>(i, j)[2] + weight*image2Overlap.at<Vec3b>(i, j)[2];
		}
	}
	Mat ROIMat = image02(Rect(Point(image1Overlap.cols, 0), Point(image02.cols, image02.rows)));  //图2中不重合的部分
	ROIMat.copyTo(Mat(imageTransform1, Rect(targetLinkPoint.x, 0, ROIMat.cols, image02.rows))); //不重合的部分直接衔接上去
	namedWindow("拼接结果", 0);
	imshow("拼接结果", imageTransform1);
	imwrite("D:\\拼接结果.jpg", imageTransform1);
	waitKey();
	return 0;
}

//计算原始图像点位在经过矩阵变换后在目标图像上相应位置
Point2f getTransformPoint(const Point2f originalPoint, const Mat &transformMaxtri)
{
	Mat originelP, targetP;
	originelP = (Mat_<double>(3, 1) << originalPoint.x, originalPoint.y, 1.0);
	targetP = transformMaxtri*originelP;
	float x = targetP.at<double>(0, 0) / targetP.at<double>(2, 0);
	float y = targetP.at<double>(1, 0) / targetP.at<double>(2, 0);
	return Point2f(x, y);
}

OpenMP中for制导指令用于迭代计算的任务分配,sections制导指令用于非迭代计算的任务分配,每一个#pragma omp section 语句会引导一个线程。

在上边的程序中相当于是两个线程分别运行两幅图像的特征提取和描写叙述操作。使用OpenMP后平均耗时2.5S,速度几乎相同提升了一倍。

时间: 2024-10-10 07:27:24

OpenMP并行编程应用—加速OpenCV图像拼接算法的相关文章

OpenMP 并行编程

最近开始学习并行编程,目的是为了提高图像处理的运行速度,用的是VS2012自带的OpenMP. 如何让自己的编译器支持OpenMP: 1) 点击 项目属性页 2)点击 配置 3)点击 [C/C++] 4)点击 语言 5)选中OpenMP支持 OpenMP 的构成:编译器指令 + 运行时例程: 编译器指令: 以 #pragma omp 开头,用以告知编译器哪一段代码需要并行. 运行时例程:必须包括omp.h 设置和获取执行环境相关的信息,也包括一系列用以同步的API: 编译器指令格式如下: #pr

OpenCL学习笔记(二):并行编程概念理解

欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术.应用感兴趣的同学加入. 并行编程的需求是显而易见的,其最大的难题是找到算法的并行功能,同时必须处理数据的共享和同步.但是,因为每一个算法都是不一样的,很难有通用的并行功能--粒度都有可能是不一样的.OpenCL提供了很多并行的抽象模型,因此算法开发人员可以在不同粒度上开发并行的算法,以及数据的共享和同步. 一般来说,并行编程有两种大类型--分散收集(s

多核并行编程方法

在多核的硬件结构中,如果要充分发挥硬件的性能,必须采用多线程(或多进程)执行,以提高CPU的利用率.多核系统的编程模型和多个CPU的SMP系统的编程模型是一致的,都属于共享存储的编程模型:同时,多核环境中也可以使用的分布式编程模型.目前,多核并行编程方法可以分为以下四类:基于Raw Thread API的方法.基于共享内存编程模型的方法.基于高层次模板库的方法.基于分布式编程的方法.(1)基于Raw Thread API的方法:这种方法主要使用系统底层API来进行多线程编程.Windows Th

C#并行编程-PLINQ:声明式数据并行

原文:C#并行编程-PLINQ:声明式数据并行 背景 通过LINQ可以方便的查询并处理不同的数据源,使用Parallel LINQ (PLINQ)来充分获得并行化所带来的优势. PLINQ不仅实现了完整的LINQ操作符,而且还添加了一些用于执行并行的操作符,与对应的LINQ相比,通过PLINQ可以获得明显的加速,但是具体的加速效果还要取决于具体的场景,不过在并行化的情况下一段会加速. 如果一个查询涉及到大量的计算和内存密集型操作,而且顺序并不重要,那么加速会非常明显,然而,如果顺序很重要,那么加

C#中的多线程 - 并行编程 z

原文:http://www.albahari.com/threading/part5.aspx 专题:C#中的多线程 1并行编程Permalink 在这一部分,我们讨论 Framework 4.0 加入的多线程 API,它们可以充分利用多核处理器. 并行 LINQ(Parallel LINQ)或称为 PLINQ Parallel类 任务并行(task parallelism)构造 SpinLock 和 SpinWait 这些 API 可以统称为 PFX(Parallel Framework,并行

并行编程框架 ForkJoin

本文假设您已经了解一般并行编程知识,了解Java concurrent部分如ExecutorService等相关内容. 虽说是Java的ForkJoin并行框架,但不要太在意Java,其中的思想在其它语言环境也是同样适用的.因为并发编程在本质上是一样的.就好像如何找到优秀的Ruby程序员?其实要找的只是一个优秀的程序员.当然,如果语言层面直接支持相关的语义会更好. 引言 Java 语言从一开始就支持线程和并发性语义.Java5增加的并发工具又解决了一般应用程序的并发需求,Java6.Java7又

Delphi xe7并行编程快速入门(转)

http://blog.csdn.net/henreash/article/details/41315183 现在多数设备.计算机都有多个CPU单元,即使是手机也是多核的.但要在开发中使用多核的优势,却需要一些技巧,花费时间编写额外的代码.好了,现在可以使用Delphi做并行编程了. 在Delphi.C++ Builder和RAD Studio XE7中,有一个简化并行运行任务的库,叫做并行编程库. 并行编程库在System.Threading单元中,其中提供了很多有用的特性,可方便的应用在已有

[转] Matlab与C++混合编程,添加OpenCV库

原文地址 峰回璐转 最近在做运动医学软件优化工作,此款软件框架及算法语言全由matlab实现,虽然matlab矩阵运算.数值计算能力强大,但速度让人难以忍 受.软件立刻移植到C++上又不太实际,故采用联合编程的方式,速度难以容忍的算法交给C++实现,C++在实现代码的过程中某些数值计算及图像处理算法 调opencv库函数. 在网上有很多matlab编写mex函数调用opencv库的方法,但都不能直接拿来.经过一步步试验,修改,最终完成,现将过程及内容记录下来留给后来人参考. 第一步: (参考参考

Net并行编程高级教程--Parallel

Net并行编程高级教程--Parallel 一直觉得自己对并发了解不够深入,特别是看了<代码整洁之道>觉得自己有必要好好学学并发编程,因为性能也是衡量代码整洁的一大标准.而且在<失控>这本书中也多次提到并发,不管是计算机还是生物都并发处理着各种事物.人真是奇怪,当你关注一个事情的时候,你会发现周围的事物中就常出现那个事情.所以好奇心驱使下学习并发.便有了此文. 一.理解硬件线程和软件线程 多核处理器带有一个以上的物理内核--物理内核是真正的独立处理单元,多个物理内核使得多条指令能够