深度学习之TensorFlow(一)——基本使用

一、目前主流的深度学习框架Caffe, TensorFlow, MXNet, Torch, Theano比较


库名称


开发语言


速度


灵活性


文档


适合模型


平台


上手难易


Caffe


c++/cuda



一般


全面


CNN


所有系统


中等


TensorFlow


c++/cuda/Python


中等



中等


CNN/RNN


Linux, OSX



MXNet


c++/cuda




全面


CNN


所有系统


中等


Torch


c/lua/cuda




全面


CNN/RNN


linux, OSX


中等


Theano


python/c++/cuda


中等



中等


CNN/RNN


Linux, OSX


二、TensorFlow的编程思想

  TensorFlow 使用graph来表示计算任务. 图中的节点被称之为 op (operation 的缩写). 一个 op获得 0 个或多个 Tensor(类型化多维数组) , 执行计算, 产生 0 个或多个 Tensor . 

  一个tensorflow的图描述了计算的过程,图必须在session里被启动,session将图的op分发到cpu或gpu之类的设备上,同时提供执行op的方法,被执行后将产生的tensor返回。python语言中,返回的tensor是numpy对象;c/c++语言中,返回的是tensorflow::Tensor实例。

计算图的两个阶段:构建阶段和执行阶段。

构建阶段,op执行步骤被描述成一个图(创建一个图表示和训练神经网络)。执行阶段使用session执行图中的op(反复执行图中的训练op)。

(1)构建图

  第一步是创建源op(source op),不需要任何输入,源op的输出被传递给其他op做运算(python库中,op构造器的返回值代表构造出的op的输出),tensorflow python库中有一个默认图,op构造器可以为其增加节点,这个默认图对许多程序来货已经够用了。

import tensorflow as tf
# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])

# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])

# 创建一个矩阵乘法 matmul op , 把 ‘matrix1‘ 和 ‘matrix2‘ 作为输入.
# 返回值 ‘product‘ 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)
#只是构造,如果要真正进行矩阵相乘,必须在session里启动这个图。

  

函数说明:

  1.tf.constant(value,dtype=None,shape=None,name=’Const’)

  创建一个常量tensor,按照给出value来赋值,可以用shape来指定其形状。value可以是一个数,也可以是一个list。如果是一个数,那么这个常量中所有值都按该数来赋值。如果是list,那么len(value)一定要小于等于shape展开后的长度。赋值时,先将value中的值逐个存入。不够的部分,则全部存入value的最后一个值。例如:

a = tf.constant(2,shape=[2])
b = tf.constant(2,shape=[2,2])
c = tf.constant([1,2,3],shape=[6])
d = tf.constant([1,2,3],shape=[3,2])
sess = tf.InteractiveSession()
print(sess.run(a))
#[2 2]
print(sess.run(b))
#[[2 2]
# [2 2]]
print(sess.run(c))
#[1 2 3 3 3 3]
print(sess.run(d))
#[[1 2]
# [3 3]
# [3 3]]

  2. tf.matmul()用来做矩阵乘法。若a为l*m的矩阵,b为m*n的矩阵,那么通过tf.matmul(a,b) 结果就会得到一个l*n的矩阵。

不过这个函数还提供了很多额外的功能。我们来看下函数的定义:

  matmul(a, b,

transpose_a=False, transpose_b=False,

a_is_sparse=False, b_is_sparse=False,

name=None):

  可以看到还提供了transpose和is_sparse的选项。如果对应的transpose项为True,例如transpose_a=True,那么a在参与运算之前就会先转置一下。而如果a_is_sparse=True,那么a会被当做稀疏矩阵来参与运算。

(2)在一个会话session中启动图

  第一步是创建一个session对象。

# 启动默认图.
sess = tf.Session()
# 调用 sess 的 ‘run()‘ 方法来执行矩阵乘法 op, 传入 ‘product‘ 作为该方法的参数.
# 上面提到, ‘product‘ 代表了矩阵乘法 op 的输出, 传入它是向方法表明, 我们希望取
回矩阵乘法 op 的输出. 整个执行过程是自动化的, 会话负责传递 op 所需的全部输入. op 通常是并发执行的.
# 函数调用 ‘run(product)‘ 触发了图中三个 op (两个常量 op 和一个矩阵乘法 op) 的执行.
# 返回值 ‘result‘ 是一个 numpy `ndarray` 对象.
result = sess.run(product)
print result
# ==> [[ 12.]]
# 任务完成, 关闭会话.释放资源
sess.close()
	Session 对象在使用完后需要关闭以释放资源. 除了显式调用 close 外, 也可以使用 "with" 代码块 来自动完成关闭动作.
with tf.Session() as sess:
  result = sess.run([product])
print result
如果机器上有超过一个可用的 GPU, 除第一个外的其它 GPU 默认是不参与计算的. 为了让 TensorFlow 使用这些 GPU, 你必须将 op 明确指派给它们执行. with...Device 语句用来指派特定的 CPU 或 GPU 执行操作:
with tf.Session() as sess:
  with tf.device("/gpu:1"):  #表示机器第二个GPU
    matrix1 = tf.constant([[3., 3.]])
    matrix2 = tf.constant([[2.],[2.]])
    product = tf.matmul(matrix1, matrix2)
    ...

(3) 交互式使用

  文档中的 Python 示例使用一个会话 Session 来启动图, 并调用 Session.run() 方法执行操作. 为了便于使用诸如 IPython 之类的 Python 交互环境, 可以使用 InteractiveSession 代替 Session 类, 使用 Tensor.eval() 和 Operation.run() 方法代替 Session.run(). 这样可以避免使用一个变量来持有会话.

# 进入一个交互式 TensorFlow 会话.
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
# 使用初始化器 initializer op 的 run() 方法初始化 ‘x‘
x.initializer.run()
# 增加一个减法 sub op, 从 ‘x‘ 减去 ‘a‘. 运行减法 op, 输出结果
sub = tf.sub(x, a)
print sub.eval()
# ==> [-2. -1.]

函数说明:

  1.  tf.Session()与tf.InteractiveSession()的区别?

  tf.InteractiveSession()加载它自身作为默认构建的session,tensor.eval()和operation.run()取决于默认的session. 换句话说:InteractiveSession 输入的代码少,原因就是它允许变量不需要使用session就可以产生结构(运行在没有指定会话对象的情况下运行变量)。

  2.  tf.Variable()

  一个变量通过调用run()方法来维持图的状态,我们通过构造variable类的实例来添加一个变量到图中。Variable()构造器需要一个初始值,可以是任意类型和shape 的Tensor。构造完成之后,变量的type和shape 是固定的。可以使用assign 方法来修改变量的值。

eg:update = tf.assign(state,new_value)   #意思是state=new_value,而这个操作行为被赋给了update

  如果你想修改变量的shape,你必须使用assign 操作,并且 validate_shpe=False。  

  属性:

  device:这个变量的device

  dtype:变量的元素类型

  graph:存放变量的图

  initial_value:这个变量的初始值

  initializer :这个变量的初始化器

  name:这个变脸的名字

  **op:**The Operation of this variable.

# 创建一个变量, 初始化为标量 0.
state = tf.Variable(0, name="counter")
# 创建一个 op, 其作用是使 state 增加 1
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)
# 启动图后, 变量必须先经过`初始化` (init) op 初始化,
# 首先必须增加一个`初始化` op 到图中.
init_op = tf.initialize_all_variables()
# 启动图, 运行 op
with tf.Session() as sess:
  # 运行 ‘init‘ op
  sess.run(init_op)
  # 打印 ‘state‘ 的初始值
  print sess.run(state)
  # 运行 op, 更新 ‘state‘, 并打印 ‘state‘
  for _ in range(3):
    sess.run(update)
    print sess.run(state)
# 输出:
# 0
# 1
# 2
# 3

  代码中 assign() 操作是图所描绘的表达式的一部分, 正如 add() 操作一样. 所以在调用 run() 执行表达式之前, 它并不会真正执行赋值操作.通常会将一个统计模型中的参数表示为一组变量. 例如, 你可以将一个神经网络的权重作为某个变量存储在一个 tensor 中. 在训练过程中, 通过重复运行训练图, 更新这个 tensor.

  3.  tf.Tensor.eval(feed_dict=None, session=None):

  作用: 在一个Seesion里面“评估”tensor的值(其实就是计算),首先执行之前的所有必要的操作来产生这个计算这个tensor需要的输入,然后通过这些输入产生这个tensor。在激发tensor.eval()这个函数之前,tensor的图必须已经投入到session里面,或者一个默认的session是有效的,或者显式指定session.

  参数:

  feed_dict:一个字典,用来表示tensor被feed的值(联系placeholder一起看)

  session:(可选) 用来计算(evaluate)这个tensor的session.要是没有指定的话,那么就会使用默认的session。

  返回:表示“计算”结果值的numpy ndarray

  4.  Tensor

  TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor. 你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和一个 shape.

  5.  Fetch

  为了取回操作的输出内容, 可以在使用 Session 对象的 run() 调用 执行图时, 传入一些 tensor, 这些 tensor 会帮助你取回结果. 在之前的例子里, 我们只取回了单个节点 state, 但是你也可以取回多个 tensor:

input1 = tf.constant(3.0)
input2 = tf.constant(2.0)
input3 = tf.constant(5.0)
intermed = tf.add(input2, input3)
mul = tf.mul(input1, intermed)
with tf.Session() as sess:
  result = sess.run([mul, intermed])
  print result
# 输出:
# [array([ 21.], dtype=float32), array([ 7.], dtype=float32)]

6.  Feed

  TensorFlow 还提供了 feed 机制, 该机制可以临时替代图中的任意操作中的 tensor 可以对图中任何操作提交补丁, 直接插入一个 tensor.feed使用一个tensor值临时替换一个操作的输出结果. 你可以提供 feed 数据作为 run() 调用的参数. feed 只在调用它的方法内有效, 方法结束, feed 就会消失. 最常见的用例是将某些特殊的操作指定为 "feed" 操作, 标记的方法是使用 tf.placeholder() 为这些操作创建占位符.

input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)
with tf.Session() as sess:
  print sess.run([output], feed_dict={input1:[7.], input2:[2.]})
# 输出:
# [array([ 14.], dtype=float32)]
时间: 2024-11-05 18:39:14

深度学习之TensorFlow(一)——基本使用的相关文章

TensorFlow【机器学习】:如何正确的掌握Google深度学习框架TensorFlow(第二代分布式机器学习系统)?

本文标签:   机器学习 TensorFlow Google深度学习框架 分布式机器学习 唐源 VGG REST   服务器 自 2015 年底开源到如今更快.更灵活.更方便的 1.0 版本正式发布,由 Google 推出的第二代分布式机器学习系统 TensorFlow一直在为我们带来惊喜,一方面是技术层面持续的迭代演进,从分布式版本.服务框架 TensorFlow Serving.上层封装 TF.Learn 到 Windows 支持.JIT 编译器 XLA.动态计算图框架 Fold 等,以及

深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3

紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把NVIDIA显卡驱动安装好了 一.安装CUDA CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务,想使用GPU就必须要使用CUDA.

牛逼哥TensorFlow资源分享:白话深度学习与TensorFlow

今天,给大家分享一本关于TensorFlow的书籍-白话深度学习与TensorFlow. 最近在看这个深度学习框架,门外汉,为了快速入门,找的都是中文教材,可能准确度译文不如原文精确,但毕竟容易理解,上手快. 买了四本原版书,但有几本最近更新的书籍由于错过了双十一,感觉价格略贵,京东薅羊毛习惯了,一般三折以上的书我都不考虑买了. 所以想办法找到了电子书,也是通过各种途径吧,淘宝,闲鱼,论坛,大部分都是买的,网上下来的免费的好多都没有书签,而且质量不是很好. 在这里免费分享给大家,试了下,不知道为

深度学习之TensorFlow安装与初体验

深度学习之TensorFlow安装与初体验 学习前 搞懂一些关系和概念 首先,搞清楚一个关系:深度学习的前身是人工神经网络,深度学习只是人工智能的一种,深层次的神经网络结构就是深度学习的模型,浅层次的神经网络结构是浅度学习的模型. 浅度学习:层数少于3层,使用全连接的一般被认为是浅度神经网络,也就是浅度学习的模型,全连接的可能性过于繁多,如果层数超过三层,计算量呈现指数级增长,计算机无法计算到结果,所以产生了深度学习概念 深度学习:层数可以有很多层,但是并不是全连接的传递参数,如上图中右边是一个

分享《深度学习之TensorFlow:入门、原理与进阶实战》PDF+源代码

下载:https://pan.baidu.com/s/1zI-pblJ5dEwjGVe-QQP9hQ 更多资料:http://blog.51cto.com/3215120 <深度学习之TensorFlow:入门.原理与进阶实战>,李金洪 著.中文PDF,939页,带书签目录,文字可以复制粘贴.配套源代码. 如图: 原文地址:http://blog.51cto.com/14050756/2315854

分享《白话深度学习与TensorFlow》+PDF+高杨

下载:https://pan.baidu.com/s/150FjIfsNVlPh-Fq-IghgWA更多资料分享:http://blog.51cto.com/14087171 <白话深度学习与TensorFlow>中文版PDF 经典学习资料,带目录和书签,文字可以复制粘贴. 图示如下: 原文地址:http://blog.51cto.com/14087171/2321679

深度学习之TensorFlow:入门原理与进阶实战

深度学习之TensorFlow:入门原理与进阶实战 链接:https://pan.baidu.com/s/1wUos19e7qhm_fA52FV8gQg 提取码:nz8i 目录 · · · · · · 配套学习资源 前言 第1篇 深度学习与TensorFlow基础 第1章 快速了解人工智能与TensorFlow 2 1.1 什么是深度学习 2 1.2 TensorFlow是做什么的 3 1.3 TensorFlow的特点 4 1.4 其他深度学习框架特点及介绍 5 1.5 如何通过本书学好深度学

AI全面入门经典书籍-pytho入门+数学+机器学习+深度学习(tensorflow)一次性打包

百度网盘:https://pan.baidu.com/s/1SShwxxBIHB_rynF_jUjApA 一.内容清单: 1..python入门书籍:?? ??? ?python基础教程.pdf?? ??? ?python语言及其应用.pdf?? ??? ?python语言入门.pdf?? ??? ?像计算机科学家一样思考python第2版.pdf ?? ??? ?备注:自己找一本精读,其他辅助阅读,会有不一样的效果.?? ? 2.数学:?? ??? ?同济高等数学 第六版 上册.pdf?? ?

【深度解析】Google第二代深度学习引擎TensorFlow开源

作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 TensorFlow 编写的运算可以几乎不用更改,就能被运行在多种异质系统上,从移动设备(例如手机和平板)到拥有几百台的机器和几千个 GPU 之类运算设备的大规模分布式系统. TensorFlow 降低了深度学习的使用门槛,让从业人员能够更简单和方便地开发新产品.作为Google 发布的“平台级产品”,很多