常州模拟赛d2t1 小X的质数

题目背景

小 X 是一位热爱数学的男孩子,在茫茫的数字中,他对质数更有一种独特的

情感。小 X 认为,质数是一切自然数起源的地方。

题目描述

在小 X 的认知里,质数是除了本身和 1 以外,没有其他因数的数字。

但由于小 X 对质数的热爱超乎寻常,所以小 X 同样喜欢那些虽然不是质数,

但却是由两个质数相乘得来的数。

于是,我们定义,一个数是小 X 喜欢的数,当且仅当其是一个质数,或是两

个质数的乘积。

而现在,小 X 想要知道,在 L 到 R 之间,有多少数是他喜欢的数呢?

输入输出格式

输入格式:

从文件 prime.in 中读取数据。

第一行输入一个正整数 Q,表示询问的组数。

接下来 Q 行,包含两个正整数 L 和 R,保证 L≤R。

输出格式:

输出 Q 行,每行一个整数,表示小 X 喜欢的数的个数。

输入输出样例

输入样例#1:

1

1 6

输出样例#1:

5
【样例 1 解释】
6 以内的质数有 2、3、5,而 4 = 2 * 2,6 = 2 * 3,因此,2,3,4,5,6 都是小 X 喜欢的数,而 1 不是.L,R <= 10^7    Q <= 10^5分析:这道题会线性筛就可以解决了.因为线性筛就是筛出素数并且剔除掉素数与另一个数i的乘积的,对于两个素数的乘积,我们只需要判断一下i是不是素数就好了不过因为询问较多,所以要用前缀和处理.
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
int q, l, r;
long long flag[10000005], prime[10000005], tot = 0, ans, vis[10000005], vis2[10000005], maxn;
long long sum[10000005];
struct node
{
    int l, r;
}e[100005];

void init(int r)
{
    for (int i = 2; i <= r; i++)
    {
        if (!flag[i])
        {
            prime[++tot] = i;
            vis[i] = 1;
        }
        for (int j = 1; j <= tot; j++)
        {
            int t = i * prime[j];
            if (t > r)
                break;
            flag[t] = 1;
            if (vis[i])
                vis2[t] = 1;
            if (i % prime[j] == 0)
                break;
        }
    }
}

int main()
{
    scanf("%d", &q);
    for (int i = 1; i <= q; i++)
    {
        scanf("%d%d", &e[i].l, &e[i].r);
        if (e[i].r > maxn)
            maxn = e[i].r;
    }
    init(maxn);
    for (int i = 2; i <= maxn; i++)
    {
        if (vis[i])
            sum[i] = sum[i - 1] + vis[i];
        else
            sum[i] = sum[i - 1] + vis2[i];
    }
    for (int i = 1; i <= q; i++)
        printf("%lld\n", sum[e[i].r] - sum[e[i].l - 1]);

    return 0;
}
 
时间: 2024-10-10 22:27:48

常州模拟赛d2t1 小X的质数的相关文章

【NOIP模拟赛】小奇挖矿 2

[题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿石交易市场,以便为飞船升级无限非概率引擎. [问题描述] 现在有m+1个星球,从左到右标号为0到m,小奇最初在0号星球. 有n处矿体,第i处矿体有ai单位原矿,在第bi个星球上. 由于飞船使用的是老式的跳跃引擎,每次它只能从第x号星球移动到第x+4号星球或x+7号星球.每到一个星球,小奇会采走该星球上所有的原矿,求小奇能采到的最大原矿数量. 注意,小奇不必最终到达m号星球. [输入格式] 第一行2个整数n,m

【0521模拟赛】小Z爱数学

题目描述 小Z想求F(n,k),F(n,k)表示n的所有因数pi中,满足n/pi <= k 的和. 小Z发现还是很水,所以他决定加大难度. 求 小Z还准备了很多个询问.现在你来解决一下吧. 输入输出格式 输入格式: 第一行两个整数m 表示询问的个数 接下来每行两个数ni,ki,表示这个询问的n和k 输出格式: , 也就是把刚好等于k的答案加进去  然后k变大 对于每个询问输出一行一个整数,表示对应的答案. 题目理解:F(n,k)表示n的所有因数qi中,满足n/qi<=k的和, m组,每组给定n

常州模拟赛d3t2 灰狼呼唤着同胞

题目背景 我的母亲柯蒂丽亚,是一个舞者.身披罗纱,一身异国装扮的她,来自灰狼的村子. 曾经在灰狼村子担任女侍的她,被认定在某晚犯下可怕的罪行之后,被赶出了村子. 一切的元凶,都要回到母亲犯下重罪的那一晚. 题目描述 我不认为柯蒂丽亚有犯罪. 二十年前的混沌,一共有n块碎片. 这n块碎片曾经两两之间都有联系,可是很多联系都在时间的洪流中消失了. 现在,我只能确定其中m条联系的种类. 每条联系都是一条无向边,任意两块碎片之间至多有一条联系,没有联系会连接在同一块碎片的两端. 联系有两种.一种是冲突,

bzoj3743 [Coci2015]Kamp 常州模拟赛d6t2

3743: [Coci2015]Kamp Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 484  Solved: 229[Submit][Status][Discuss] Description 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的点)要集中到一个点举行聚会. 聚会结束后需要一辆车从举行聚会的这点出发,把这K个人分别送回去. 请你回答,对于i=1~n,如果在第i个点举行聚会,司

常州模拟赛d5t2 mogician

分析:一个暴力的思想是枚举g,然后枚举每个数ai,看能不能符合要求,这样复杂度是O(nA)的,直接T掉了.也没什么其他的办法了,在暴力的基础上优化一下,优化的关键是要如何快速统计出不满足要求的数的个数.利用数据结构?想不到.仔细分析一下,不满足要求的数组成了很多区间,每次i枚举g的倍数,不满足要求的数的区间总在[i + k + 1,i + g - 1]中,因为i+k+1通过减k满足不了要求,i+g-1比g的倍数少了1,那么利用前缀和数组维护一下个数就好了.不过有一种特殊情况:k >= g - 1

常州模拟赛d5t1 journalist

分析:出题人丧心病狂卡spfa......只能用dijkstar+堆优化. 主要的难点是字典序的处理上,一个想法是在做最短路的时候处理,边松弛边记录,比个大小记录最佳答案.具体的思路大概和最短路计数差不多,当遇到d[u] + w[i] == d[v]是,说明到d[v]有两条最短路了,更新一下答案. 但是这样效率太低了,每一次松弛都要更新一次,能不能一次性更新完呢?可以的.我们在跑完最短路后把满足d[u] + w[i] == d[v]的点v加入u的邻接表中,排个序,然后dfs一遍就好了. #inc

常州模拟赛d7t1 亲戚

分析:把题目换个方式理解,就是把各个点排成一列,并且指定了若干对的先后次序,问你有多少种序列满足要求. 显然是一道dp题,直接推出方程似乎有点点困难,那么先看看数据特点. 1.有一些点满足fi=0,那么直接输出n!就可以了. 2.保证所有的关系是一条链.我们假设所有链的长度和为sum,链1的长度为l1,链2的长度为l2...... 现在有sum个位置,我要把链1上的点按照次序放到sum个位置上,一共有C(sum,l1)种方案,接下来放链2,还有sum - l1个位置,所以有C(sum - l1,

常州模拟赛d5t3 appoint

分析:这道题比较奇葩.因为字符串没有swap函数,所以一个一个字符串交换只有30分.但是我们可以不用直接交换字符串,而是交换字符串的指针,相当于当前位置是哪一个字符串,每次交换int,可以拿60分. 对于二维问题,通常转化为一维问题去考虑,得到适当的方法再应用到二维上来,这道题如果转移到一维上就是给你一个序列,每次交换一对区间,区间不重叠,最后要求顺序输出整个序列,很显然,我们只要记录每个数旁边的数就好了,所以用链表能很快解决.转化到二维上,我们记录一个右方的链表,下方的链表,每次交换操作只需要

常州模拟赛d7t3 水管

分析:第一问还是很好做的,关键是怎么做第二问.我们可以每次删掉最小生成树上的一条边,然后再求一次最小生成树,看边权和大小和原来的是不是一样的,不过这个做法效率很低. 考虑Kruskal算法的原理,每次加边权最小的边,如果边上的两个点不连通.如果在最小生成树的基础上把不是上面的边给加上去,就会形成环,在环上找除了这条边之外的最大边权,如果等于新加入的这条边,那么就有多个最小生成树.为什么这样呢?我们把最大边拿掉,添加进这条边,两个点还是连通的,边权和一定,只是在Kruskal的时候先考虑了那条最大