网易公开课,第15课
notes,11
参考,
PCA本质是旋转找到新的基(basis),即坐标轴,并且新的基的维数大大降低
ICA也是找到新的基,但是目的是完全不一样的,而且ICA是不会降维的
对于ICA,最经典的问题,“鸡尾酒会”问题
在鸡尾酒会,上很多人同时在说话,还有背景音乐,如果我们放若干个话筒进行声音采集
是否可以从采集到的数据中,分离出每个人独立的声音
假设有n个不同的人,m个时间采集点,一般会用和人数一样多的话筒,也是n个
is an n-dimensional vector, is the acoustic reading recorded by microphone j at time i
is an n-dimensional vector, is the sound that speaker j was uttering at time i.
x向量,表示在时间点i,n个采集器收集到的声音数据
s向量,表示在时间点i,n个人真正发出的声音
那么x中每个值,一定是s中所有的值的一个线性变换产生的,话筒可能收集到从所有人发出的声音,根据远近或其他环境不同,不同的线性变换参数
所以可以表示成,
A is an unknown square matrix called the mixing matrix
现在问题比较清晰,我们可以观察到x,需要求出s
那么只要我们可以求出A,就可以求出x
设,
s= Wx
所以我们的目标变成求出W
denote the i-th row of W, so that
the j-th source can be recovered by computing
ICA ambiguities
很明显,如果没有任何先验知识,光凭x= As,是不可能求出唯一的A和s的
比如你求出A,但是2A也是可以的
或者PA,也是可以的,P为permutation matrix,其实就是调换其中行的位置,因为只要相应的调换S中人的位置即可
但是这些对于我们的例子影响不大,比如A和2A只是音量大小不同而已
并且s一定是非高斯分布才可以使用ICA
因为高斯分布的密度函数是rotationally symmetric
比如,x = As,其中s满足高斯分布,那么x也一定满足高斯分布
并且协方差为,
且x满足 分布
此时,我们改变A
设R be an arbitrary orthogonal (less formally, a rotation/reflection) matrix,
那么有,
你会发现 的分布没有变化,仍然是 分布
所以如果s是高斯分布,你根本无法求出唯一的A,因为对于不同的A,你会得到相同的观察值x
ICA algorithm
下面直接来看ICA算法如何求出W
The algorithm we describe is due to Bell and Sejnowski, and the interpretation we give will be of their algorithm as a method for maximum likelihood estimation.
仍然是用最大似然来求解这个问题,
Joint distribution为,假设sources 之间都是独立的
因为前面有,
所以有,
为何多了个W的行列式,参考讲义的证明,不加是错误的
前面说了,如果没有任何先验知识,是不可能求出W的,
所以这边我们需要假设p(s)的分布
这里是通过假设cumulative distrbution function (cdf) F,来求出p的
F的定义,区间上的概念和
所以有,
F(x)要满足两个性质是:单调递增和在[0,1],所以sigmoid函数很适合
于是有,
那么现在目标函数,log likelihood为,
然后用随机梯度下降,得到W,完成求解
其中后面的梯度就是对log likelihood求导得到的
对W行列式求导, ,参考矩阵的线性代数
参考,独立成分分析(Independent Component Analysis)
Andrew Ng机器学习公开课笔记–Independent Components Analysis