设 $f$ 的正惯性指数为 $r$, 负惯性指数为 $s$, 则存在满秩线性替换 $$\bee\label{487:4:eq1} y_i=d_{i1}x_1+\cdots +d_{in}x_n,\quad 1\leq i\leq n \eee$$ 使得 $$\bee\label{487:4:eq2} \bea f&=l_1^2+l_2^2+\cdots+l_p^2 -l_{p+1}^2-\cdots-l_{p+q}^2\\ & =y_1^2+\cdots+y_r^2 -y_{r+1}^2 -\cdots-y_{r+s}^2. \eea \eee$$ 往证 $r\leq p$ ($s\leq q$ 可类似证得). 用反证法. 若 $r>p$, 考虑线性方程组 $$\bee\label{487:4:eq3} \seddm{ c_{11}x_1+\cdots+c_{1n}x_n=0\\ \cdots\cdots\cdots\cdots\cdots\\ c_{p1}x_1+\cdots+c_{pn}x_n=0\\ d_{r+1,1}x_1+\cdots+d_{r+1,n}x_n=0\\ \cdots\cdots\cdots\cdots\cdots\\ d_{n1}x_1+\cdots+d_{nn}x_n=0 }. \eee$$ 其 (未知数个数为 $n$, 而方程个数为 $p+(n-r)<n$) 有非零解 $(k_1,\cdots,k_n)$. 代入 (2), 得 $$\bex f=-l_{p+1}^2-\cdots-l_{p+q}^2 =y_1^2+\cdots+y_r^2. \eex$$ 因此, $$\bee\label{487:4:eq4} l_{p+1}=\cdots=l_{p+q}=y_1=\cdots=y_r=0. \eee$$ 结合 \eqref{487:4:eq3}-\eqref{487:4:eq4} 的后半部分知 $$\bex \seddm{ d_{11}k_1+\cdots+d_{1n}k_n=0\\ \cdots\cdots\cdots\cdots\cdots\\ d_{r1}k_1+\cdots+d_{rn}k_n=0\\ d_{r+1,1}k_1+\cdots+d_{r+1,n}k_n=0\\ \cdots\cdots\cdots\cdots\cdots\\ d_{n1}k_1+\cdots+d_{nn}k_n=0 }. \eex$$ 因为 $k_1,\cdots,k_n$ 不全为零, 而其系数行列式等于零. 这与 $\eqref{487:4:eq1}$ 为满秩线性替换矛盾. 故有结论.
161023解答
时间: 2024-10-10 02:39:56
161023解答的相关文章
2014年至今的博文目录(更新至2017年06月12日)
拓扑学中凝聚点的几个等价定义(2017-06-12 07:51) 江苏省2017年高等数学竞赛本二试题(含解答)(2017-06-10 20:59) 裴礼文数学分析中的典型问题与方法第4章一元函数积分学练习(2017-06-10 11:04) 2017年厦门大学第十四届景润杯数学竞赛试卷(数学类)评分标准(2017-06-05 15:31) 2017年华东师范大学数学竞赛(数学类)试题(2017-06-05 15:28) 裴礼文数学分析中的典型问题与方法第3章一元微分学练习(2017-05-30
PHP常见问题及解答
当作PHP学习时,总是会在baidu上查很多的例如开发环境的选择呀,PHP好不好呀!或者是不是转学JAVA,或是.NET等: 首先本人是从2010年下半年开始报名学的PHP(IN Guangzhou),每周一天学了近6个月左右,从最基础的HTML,CSS,DIV,JAVASCRIPT,AJAX,PHP,然后学二次开发:闲暇之余还开通了一个个人blog( PHP wordpress); 由于个人工作原因,这几年放了一段时间未动PHP了,今年开始又自学了.NET; ---目的就想业余做一份兼职,锻炼
微信送礼物投票系统的详细解答
就目前来说,市场上的第三方微信投票系统种类很多,功能不一鱼龙混杂,功能很多的情况下有一些细微的区别,对于用户来说选择有一定的难度,下面我就来简单介绍一下微信投票活动大家经常关注的16个问题,对此进行详细的解答:只要能同时包括这个些功能的系统,通常都能够很好的满足活动举办方的要求,活动良好的用户体验! Q1.该投票系统可以设置每个微信用户投票次数吗? A3:可以的,可以设置一次活动每个微信用户的投票数,可设置每个微信用户每天的投票数!并且取消关注自动减掉此用户投票的所有记录,做到了自动减票的功能.
2014马哥Linux0217中对0214三题的解答
前几天在做2014马哥Linux0214的作业的时候,发现其实这三题在0217中有解答,当然觉得马哥比自己写得好太多,所以忍不住要把马哥的答案贴出来,以供自己学习. 第一题:写一个脚本,用for循环实现显示/etc/init.d/functions./etc/rc.d/rc.sysinit./etc/fstab有多少行 #!/bin/bash for fileName in /etc/init.d/functions /etc/rc.d/rc.sysinit /etc/fstab;do line
JAVA常见面试题及解答-java开发
JAVA常见面试题及解答 Java的垃圾回收总结 浅谈Java中的内部类 1)transient和volatile是java关键字吗? 如果用transient声明一个实例变量,当对象存储时,它的值不需要维持.例如: class T { transient int a; //不需要维持 int b; //需要维持 } 这里,如果T类的一个对象写入一个持久的存储区域,a的内容不被保存,但b的将被保存. volatile修饰符告诉编译器被volatile修饰的变量可以被程序的其他部分改变.在多
软件工程之路—解答数据流图
数据流图的做法其实很简单,题的类型有很多,但是万变不离其宗,我们先看一下考试的类型: 1.确定实体(数据源)名称 2.确定数据文件(数据存储)的名称 3.确定加工的名称 4,.找出缺少的数据流 其实,这就是在考查,数据流图的画法. 也就是说,根据题中系统的系列描述,能够画出数据流图,那么,这题能拿满分就是板上钉钉的事儿. 首先看一下一般流程图的画法 (1)首先画系统的输入输出,即先画顶层数据流图.顶层流图只包含一个加工,用以表示被开发的系统,然后考虑该系统有哪些输入数据.输出数据流.顶层图的作用
在axure中实现商品数量加减效果,原型库网站讲师-金乌 解答同学问
有同学在群里提问,如何使用axure制作商品数量增加减少效果,见GIF图.虽然属于初级教程,但很多同学还是小白新手阶段,所以特地录制了详细的视频讲解,供大家学习参考! 该教程由原型库网站录制http://www.yuanxingku.com转载请注明出处! 在axure中实现商品数量加减效果,原型库网站讲师-金乌 解答同学问,布布扣,bubuko.com
解答zabbix在configure时候遇到的问题(CentOS)
zabbix在configure时候遇到的问题(CentOS)为你解答: 在CentOS系统中,安装zabbix进行configure时会遇到以下4个主要问题 ./configure --enable-server --enable-agent --with-mysql --with-net-snmp --with-jabber --with-libcurl 1 configure: error: MySQL library not found the problem is not instal
C++ Primer 第四版课后练习解答 习题1.1
注意:本随笔是在<C++Primer(第四版)习题解答(完整版)>中直接抄录的.此处主要是便于本人以后反复阅读. 习题1.1 查看所用的编译器文档,了解它所用的文件命名规范.编译并运行本节的main程序. [解答] 一般而言,C++编译器要求编译的程序保存在文件中.C++程序一般涉及两类文件:头文件和源文件.大多数系统中,文件的名字由文件名和文件后缀(又称扩展名)组成.文件后缀通常表明文件的类型,如头文件的后缀可以是.h或.hpp等:源文件和后缀可以是.cc或.cpp等,具体的后缀与使用的编译