信号量sem_init

信号量的数据类型为结构sem_t,它本质上是一个长整型的数。函数sem_init()用来初始化一个信号量。它的原型为:  

extern int sem_init __P((sem_t *__sem, int __pshared, unsigned int __value));  

sem为指向信号量结构的一个指针;pshared不为0时此信号量在进程间共享,否则只能为当前进程的所有线程共享;value给出了信号量的初始值。  

函数sem_post( sem_t *sem)用来增加信号量的值。当有线程阻塞在这个信号量上时,调用这个函数会使其中的一个线程不在阻塞,选择机制同样是由线程的调度策略决定的。  

函数sem_wait( sem_t *sem)被用来阻塞当前线程直到信号量sem的值大于0,解除阻塞后将sem的值减一,表明公共资源经使用后减少。函数sem_trywait (sem_t *sem )是函数sem_wait()的非阻塞版本,它直接将信号量sem的值减一。  

函数sem_destroy(sem_t*sem)用来释放信号量sem。 

信号量用sem_init函数创建的,下面是它的说明:

  #include<semaphore.h>

int sem_init (sem_t *sem, int pshared, unsigned int value);

这个函数的作用是对由sem指定的信号量进行初始化,设置好它的共享选项,并指定一个整数类型的初始值。pshared参数控制着信号量的类型。如果pshared的值是0,就表示它是当前里程的局部信号量;否则,其它进程就能够共享这个信号量。我们现在只对不让进程共享的信号量感兴趣。 (这个参数受版本影响), pshared传递一个非零将会使函数调用失败。

  这两个函数控制着信号量的值,它们的定义如下所示:

  

  #include <semaphore.h>

int sem_wait(sem_t * sem);

int sem_post(sem_t * sem);

这两个函数都要用一个由sem_init调用初始化的信号量对象的指针做参数。

sem_post函数的作用是给信号量的值加上一个“1”,它是一个“原子操作”---即同时对同一个信号量做加“1”操作的两个线程是不会冲突的;而同时对同一个文件进行读、加和写操作的两个程序就有可能会引起冲突。信号量的值永远会正确地加一个“2”--因为有两个线程试图改变它。

sem_wait函数也是一个原子操作,它的作用是从信号量的值减去一个“1”,但它永远会先等待该信号量为一个非零值才开始做减法。也就是说,如果你对一个值为2的信号量调用sem_wait(),线程将会继续执行,介信号量的值将减到1。如果对一个值为0的信号量调用sem_wait(),这个函数就会地等待直到有其它线程增加了这个值使它不再是0为止。如果有两个线程都在sem_wait()中等待同一个信号量变成非零值,那么当它被第三个线程增加一个“1”时,等待线程中只有一个能够对信号量做减法并继续执行,另一个还将处于等待状态。

信号量这种“只用一个函数就能原子化地测试和设置”的能力下正是它的价值所在。还有另外一个信号量函数sem_trywait,它是sem_wait的非阻塞搭档。

最后一个信号量函数是sem_destroy。这个函数的作用是在我们用完信号量对它进行清理。下面的定义:

#include<semaphore.h>

int sem_destroy (sem_t *sem);

这个函数也使用一个信号量指针做参数,归还自己战胜的一切资源。在清理信号量的时候如果还有线程在等待它,用户就会收到一个错误。

与其它的函数一样,这些函数在成功时都返回“0”。

#include<stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <string.h>

#include <pthread.h>

#include <semaphore.h>

sem_t bin_sem;

void *thread_function1(void *arg)

{

printf("thread_function1--------------sem_wait\n");

sem_wait(&bin_sem);

printf("sem_wait\n");

while (1)

{

}

}

void *thread_function2(void *arg)

{

printf("thread_function2--------------sem_post\n");

sem_post(&bin_sem);

printf("sem_post\n");

while (1)

{

}

}

int main()

{

int res;

pthread_t a_thread;

void *thread_result;

res = sem_init(&bin_sem, 0,0);

if (res != 0)

{

perror("Semaphoreinitialization failed");

}

printf("sem_init\n");

res = pthread_create(&a_thread,NULL, thread_function1, NULL);

if (res != 0)

{

perror("Thread creationfailure");

}

printf("thread_function1\n");

sleep (5);

printf("sleep\n");

res = pthread_create(&a_thread,NULL, thread_function2, NULL);

if (res != 0)

{

perror("Thread creationfailure");

}

while (1)

{

}

}

sem_init

thread_function1

thread_function1--------------sem_wait

sleep

thread_function2--------------sem_post

sem_wait

sem_post

信号量sem_init

时间: 2024-10-09 09:53:25

信号量sem_init的相关文章

Linux系统编程——线程同步与互斥:无名信号量

信号量概述 信号量广泛用于进程或线程间的同步和互斥,信号量本质上是一个非负的整数计数器,它被用来控制对公共资源的访问. 编程时可根据操作信号量值的结果判断是否对公共资源具有访问的权限,当信号量值大于 0 时,则可以访问,否则将阻塞.PV 原语是对信号量的操作,一次 P 操作使信号量减1,一次 V 操作使信号量加1. 信号量主要用于进程或线程间的同步和互斥这两种典型情况. 信号量用于互斥: 信号量用于同步: 在 POSIX 标准中,信号量分两种,一种是无名信号量,一种是有名信号量.无名信号量一般用

linux系统编程:线程同步-信号量(semaphore)

线程同步-信号量(semaphore) 生产者与消费者问题再思考 在实际生活中,只要有商品,消费者就可以消费,这没问题.但生产者的生产并不是无限的,例如,仓库是有限的,原材料是有限的,生产指标受消费指标限制等等.为了进一步,解决好生产者与消费者问题,引入信号量进机制. 信号量 信号量(semaphore)是互斥量的升级版:互斥量的状态为0或1,而信号量可以为n.也就是说,使用互斥量时,最多允许一个线程进入关键区,而信号量允许多个,具体值是信号量当前的内部值. 相关函数 sem_t //信号量类型

Linux IPC 同步(四):信号量

Posix  semaphore 有名信号量 /* sem_open - initialize and open a named semaphore */ #include <fcntl.h> /* For O_* constants */ #include <sys/stat.h> /* For mode constants */ #include <semaphore.h> sem_t *sem_open(const char *name, int oflag);

线程同步与互斥:POSIX无名信号量

信号量概述 信号量广泛用于进程或线程间的同步和互斥,信号量本质上是一个非负的整数计数器,它被用来控制对公共资源的访问. 编程时可根据操作信号量值的结果判断是否对公共资源具有访问的权限,当信号量值大于 0 时,则可以访问,否则将阻塞.PV 原语是对信号量的操作,一次 P 操作使信号量减1,一次 V 操作使信号量加1. 信号量主要用于进程或线程间的同步和互斥这两种典型情况. 信号量用于互斥: 信号量用于同步: 在 POSIX 标准中,信号量分两种,一种是无名信号量,一种是有名信号量.无名信号量一般用

生产者消费者之信号量的使用

实验报告 一.实验目的 1.熟悉临界资源.信号量及PV操作的定义与物理意义 2.了解进程通信的方法 3.掌握进程互斥与同步的相关知识 4.掌握用信号量机制解决进程之间的同步与互斥问题 5.实现生产者-消费者问题,深刻理解进程同步问题 二.实验环境 Linux系统 三.实验内容 在Linux操作系统下用C或C++实现经典同步问题:生产者-消费者问题,具体要求如下: 1. 一个大小为10的缓冲区,初始状态为空. 2. 2个生产者,随机等待一段时间,往缓冲区中添加数据,若缓冲区已满,等待消费者取走数据

Linux环境下线程消息同步的陷阱

我们程序中常常会使用到线程间的消息同步处理,比如以下一段伪码 var message = "": void func()  {   1. 启动线程Thread(该线程中填充message的内容):   2. 阻塞,直到等待到完成message填充的事件:   3. 处理message:   .... } void Thread()  {   1. 通过某种处理填充message:   2. 触发func中的阻塞事件: } 我们通常会使用条件变量来完成类似情况的线程同步处理 比如wind

Linux下C的线程同步机制

C里提供了保证线程安全性的三种方法: (添加头文件#include<pthread.h>,pthread 库不是 Linux 系统默认的库,连接时需要使用静态库 libpthread.a, 在编译中要加 -lpthread参数) 互斥锁 通过锁的机制实现线程间的互斥,同一时刻只有一个线程可以锁定它,当一个锁被某个线程锁定的时候,如果有另外一个线程尝试锁定这个临界区(互斥体),则第二个线程会被阻塞,或者说被置于等待状态.只有当第一个线程释放了对临界区的锁定,第二个线程才能从阻塞状态恢复运行. i

nginx源码分析--进程间通信机制 &amp; 同步机制

Nginx源码分析-进程间通信机制 从nginx的进程模型可以知道,master进程和worker进程需要通信,nginx中通信的方式有套接字.共享内存.信号.对于master进程,从外部接受信号,master进程主要就是监控.接受外部信号,将有必要的信号传递给worker进程,master进程大部分时间都是阻塞在sigsuspend()函数调用上.Worker进程屏蔽了所有的外部信号,那么Master进程就通过套接字和worker进程通信,worker进程修改全局变量,使得worker进程接受

Linux线程同步

线程同步-互斥锁 1.初始化互斥锁pthread_mutex_init() int pthread_mutex_init(pthread_mutex_t *restrict mutex, const pthread_mutexattr_t *restrict attr); 例: pthread_mutex_t mutex; pthread_mutex_init(&mutex, NULL); 2.锁住互斥锁pthread_mutex_lock() int pthread_mutex_lock(pt