转 http://www.zhimengzhe.com/bianchengjiaocheng/Javabiancheng/257227.html
1、回溯法
回溯算法实际上一个类似枚举的搜索尝试过程,主要是在搜索尝试过程中寻找问题的解,当发现已不满足求解条件时,就“回溯”返回,尝试别的路径。回溯法是一种选优搜索法,按选优条件向前搜索,以达到目标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。
如果需要求所有的解,则需要对每个状态进行搜索。(函数返回值设为void)如果要求存在一个解,那么找到某个解直接返回即可。(函数返回值设为boolean)
2、算法框架
回溯法主要分为求所有的解求存在一个解,其代码框架如下所示。
核心把握:
结果收集条件(回溯结束条件)继续进入下一层搜索条件搜索上界下界
//求所有解的算法框架 public void backtracting(temp){ if("temp是一个结果"){ //结果收集条件 加入结果集; return; } for(j=start;j<= end;j++){ if("不满足加入条件") continue; temp.add(a); //加入当前元素 backtracting(j+1); //继续进行下一步搜索 temp.remove(a); //回溯的清理工作,把上一步的加入结果删除 } } //求存在解的算法框架 public boolean backtracting(temp){ if("temp是一个结果"){ //结果收集条件 加入结果集; return true; } for(j=start;j<= end;j++){ if("不满足加入条件") continue; temp.add(a); //加入当前元素 if(backtracting(j+1)) return true; //继续进行下一步搜索 temp.remove(a); //回溯的清理工作,把上一步的加入结果删除 return false; } }
3、回溯法解题的一般步骤
(1)针对所给问题,确定问题的解空间: 首先应明确定义问题的解空间,问题的解空间应至少包含问题的一个(最优)解。 (2)确定结点的扩展搜索规则,搜索的结果一定要包括要求的解。 (3)以深度优先方式搜索解空间,并在搜索过程中用剪枝函数避免无效搜索(求存在解的问题会出现剪枝)。
4、常见题目示例
77. Combinations
Given two integersnandk, return all possible combinations ofknumbers out of 1 ...n.
For example,
Ifn= 4 andk= 2, a solution is:
[ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4], ]
题目:从1----n中选出k个数作为组合,求出所有的组合具体的序列。
思路:回溯法,每次从下界开始遍历,到上界结束。满足size() == k 则加入结果,所有解都求出则结束遍历。也可以用二进制模拟的方法。
public class Solution { List<List<Integer>> res = new LinkedList<List<Integer>>(); public List<List<Integer>> combine(int n, int k) { if(k==0) return res; helper(k,n,1,new LinkedList<Integer>()); return res; } public void helper(int k,int n,int start,List<Integer> out){ if(k<=0) return; if(k == out.size()){ List<Integer> temp = new LinkedList<Integer>(out); res.add(temp); return; } for(int i=start;i<=n;i++){ out.add(i); helper(k,n,i+1,out); //因为是组合,元素无关顺序,所以每次从下一步进行搜索 out.remove(out.size()-1); } } }
39. Combination Sum
Given asetof candidate numbers (C)(without duplicates)and a target number (T), find all unique combinations inCwhere the candidate numbers sums toT.
Thesamerepeated number may be chosen fromCunlimited number of times.
Note:
All numbers (including target) will be positive integers.The solution set must not contain duplicate combinations.
For example, given candidate set[2, 3, 6, 7]
and target7
,
A solution set is:
[ [7], [2, 2, 3] ]
题目:求一个set之中【没有相同的元素】,和为target的组合数。
思路:回溯,收集条件即为当前序列的 target == 0,其他和求组合一样。
public class Solution { public List<List<Integer>> list = new LinkedList<List<Integer>>(); public List<List<Integer>> combinationSum(int[] candidates, int target) { if(candidates.length == 0) return list; helper(candidates,target,new LinkedList<Integer>(),0); return list; } public void helper(int[] candidates,int target,List<Integer> temp,int start){ //维护一个target代表当前的和,0表示temp元素之和等于target, if(target<0) //为了便于判断收集条件 return; if(target == 0){ list.add(new LinkedList<Integer>(temp)); return; } for(int i=start;i<candidates.length;i++){ temp.add(candidates[i]); helper(candidates,target-candidates[i],temp,i); temp.remove(temp.size()-1); } } }
40. Combination Sum II
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations inCwhere the candidate numbers sums toT.
Each number inCmay only be usedoncein the combination.
Note:
All numbers (including target) will be positive integers.The solution set must not contain duplicate combinations.
For example, given candidate set[10, 1, 2, 7, 6, 1, 5]
and target8
,
A solution set is:
[ [1, 7], [1, 2, 5], [2, 6], [1, 1, 6] ]
题目:求一个set之中【有相同的元素】,和为target的组合数【组合不能重复】。
思路:在回溯之前的条件判断中加入和前一个元素相比,如果相同就不加入。 nums[i] == nums[i-1] continue;
public class Solution { public List<List<Integer>> list = new LinkedList<List<Integer>>(); public List<List<Integer>> combinationSum2(int[] candidates, int target) { Arrays.sort(candidates); if(candidates.length == 0) return list; helper(candidates,target,new LinkedList<Integer>(),0); return list; } public void helper(int[] candidates,int target,List<Integer> temp,int start){ if(target<0) return; if(target == 0){ list.add(new LinkedList<Integer>(temp)); return; } for(int i=start;i<candidates.length;i++){ if(i > start && candidates[i] == candidates[i-1]) continue; temp.add(candidates[i]); helper(candidates,target-candidates[i],temp,i+1); temp.remove(temp.size()-1); } } }
216. Combination Sum III
Find all possible combinations ofknumbers that add up to a numbern, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
Example 1:
Input:k= 3,n= 7
Output:
[[1,2,4]]
Example 2:
Input:k= 3,n= 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
题目:在1-----9中找出k个元素使其相加等于n
思路:和前面的题类似,回溯下界1 上界9 ,收集的时候限定条件改为 temp.size() == k && target == 0
public class Solution { List<List<Integer>> res = new LinkedList<List<Integer>>(); public List<List<Integer>> combinationSum3(int k, int n) { if(k == 0){ return res; } hleper(n,k,1,new LinkedList<Integer>()); return res; } public void hleper(int sum,int k,int start,List<Integer> templist){ if(sum < 0) return; if(sum == 0 && templist.size()==k) { List<Integer> li = new ArrayList<Integer>(templist); res.add(li); return; } for(int i=start;i<=9;i++){ templist.add(i); hleper(sum-i,k,i+1,templist); templist.remove(templist.size()-1); } } }
46. Permutations
Given a collection ofdistinctnumbers, return all possible permutations.
For example,[1,2,3]
have the following permutations:
[ [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], [3,2,1] ]
题目:求出0一串不同的数字的全排列。
思路:1、回溯法深搜,每次都从0------end搜索,不过需要有一个标记数组,来记录哪些已经访问过了,回溯的时候加入的元素以及标记都需要清除。
public class Solution { List<List<Integer>> res = new LinkedList<List<Integer>>(); public List<List<Integer>> permute(int[] nums) { if(nums.length == 0) return res; int[] temp = new int[nums.length+1]; helper(nums,new LinkedList<Integer>(),temp); return res; } public void helper(int[] nums,List<Integer> out,int[] visited){ if(nums.length == out.size()){ List<Integer> temp = new LinkedList<Integer>(out); res.add(temp); return; } for(int i=0;i<nums.length;i++){ if(visited[i] == 0){ visited[i]=1; out.add(nums[i]); helper(nums,out,visited); visited[i]=0; //标记清除 out.remove(out.size()-1); //临时结果回溯 } } } }
47. Permutations II
Given a collection of numbers that might contain duplicates, return all possible unique permutations.
For example,[1,1,2]
have the following unique permutations:
[ [1,1,2], [1,2,1], [2,1,1] ]
题目:给出含有相同数字的元素,求所有元素的排列。
思路:当nums[i] == nums[i-1] 时候,直接进行下一轮搜索,因为如果进行深搜索的话,得出的结果会和之前的重复。即在if(条件处)限定具体的条件。
public class Solution { public List<List<Integer>> list = new LinkedList<List<Integer>>(); public List<List<Integer>> permuteUnique(int[] nums) { Arrays.sort(nums); if(nums.length == 0) return list; int[] visited = new int[nums.length+1]; helper(nums,new LinkedList<Integer>(),visited); return list; } public void helper(int[] nums,List<Integer> temp,int[] visited){ if(temp.size() == nums.length){ list.add(new LinkedList<Integer>(temp)); return; } for(int i=0;i<nums.length;i++){ if (i>0 && nums[i]==nums[i-1]&&visited[i-1]==1) continue; //具体的限定nums[i-1]==nums[i]则进行下一轮搜索,同时引入标记矩阵。 if(visited[i] == 0){ visited[i]=1; temp.add(nums[i]); helper(nums,temp,visited); visited[i]=0; temp.remove(temp.size()-1); } } } }
22. Generate Parentheses
Givennpairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, givenn= 3, a solution set is:
[ "((()))", "(()())", "(())()", "()(())", "()()()" ]
题目:求出所有有效括号的全排列
思路:针对一个长度为2n的合法排列,第1到2n个位置都满足如下规则:左括号的个数大于等于右括号的个数
设left和right分别为剩余的左右括号数目,则使用递归求解可以分为以下几种情况 1、left>0 可以继续加括号 2、left=0 and right=0 结果收集 3、right>0 还需要满足right>left加入右括号
public class Solution { public List<String> list = new LinkedList<String>(); public List<String> generateParenthesis(int n) { if(n == 0) return list; generate(n,n,"",list); return list; } public void generate(int left,int right,String res,List<String> list){ if(left == 0 && right == 0){ list.add(res); return; } if(left>0){ generate(left-1,right,res+"(",list); } if(right>0 && right>left){ generate(left,right-1,res+")",list); } } }
78. Subsets
Given a set ofdistinctintegers,nums, return all possible subsets.
Note:The solution set must not contain duplicate subsets.
For example,
Ifnums=[1,2,3]
, a solution is:
[ [3], [1], [2], [1,2,3], [1,3], [2,3], [1,2], [] ]
题目:求一个集合的子集,集合中不包含相同元素
思路:1、二进制模拟运算,每一个组合代表一个二进制(1代表取,0代表不取)。2、回溯法,和求组合的方式类似,不过收集条件改为来一个收集一个,即不加任何
收集条件,也可以看成if(true) 收集;
//二进制模拟计算 public class Solution { List<List<Integer>> res = new LinkedList<List<Integer>>(); public List<List<Integer>> subsets(int[] nums) { int n = nums.length; int count =1<<n; for(int i=0;i<count;i++){ List<Integer> temp = new LinkedList<Integer>(); int k=i; for(int j=0;j<n;j++){ int flag = k&1; k=k>>1; if(flag==0) temp.add(nums[j]); } res.add(temp); } return res; } }
//回溯法 public class Solution { public List<List<Integer>> res = new LinkedList<List<Integer>>(); public List<List<Integer>> subsets(int[] nums) { if(nums.length == 0) return res; helper(new LinkedList<Integer>(),0,nums); return res; } public void helper(List<Integer> temp,int start,int[] nums){ res.add(new LinkedList<Integer>(temp)); for(int i=start;i<nums.length;i++){ temp.add(nums[i]); helper(temp,i+1,nums); temp.remove(temp.size()-1); } } }
90. Subsets II
Given a collection of integers that might contain duplicates,nums, return all possible subsets.
Note:The solution set must not contain duplicate subsets.
For example,
Ifnums=[1,2,2]
, a solution is:
[ [2], [1], [1,2,2], [2,2], [1,2], [] ]
题目:求含有重复元素的数组的子集合不能包含两个相同的子集合【和数学的集合不同】。
思路:先排序,递归进入下一层的条件 nums[i] != nums[i-1]。
public class Solution { public List<List<Integer>> res = new LinkedList<List<Integer>>(); public List<List<Integer>> subsetsWithDup(int[] nums) { Arrays.sort(nums); if(nums.length == 0) return res; helper(new LinkedList<Integer>(),0,nums); return res; } public void helper(List<Integer> temp,int start,int[] nums){ res.add(new LinkedList<Integer>(temp)); for(int i=start;i<nums.length;i++){ if(i>start && nums[i]==nums[i-1]) continue; temp.add(nums[i]); helper(temp,i+1,nums); temp.remove(temp.size()-1); } } }
526. Beautiful Arrangement
Suppose you haveNintegers from 1 to N. We define a beautiful arrangement as an array that is constructed by theseNnumbers successfully if one of the following is true for the ithposition (1 ≤ i ≤ N) in this array:
The number at the ithposition is divisible byi.iis divisible by the number at the ithposition.
Now given N, how many beautiful arrangements can you construct?
Example 1:
Input: 2 Output: 2 Explanation: The first beautiful arrangement is [1, 2]: Number at the 1st position (i=1) is 1, and 1 is divisible by i (i=1). Number at the 2nd position (i=2) is 2, and 2 is divisible by i (i=2). The second beautiful arrangement is [2, 1]: Number at the 1st position (i=1) is 2, and 2 is divisible by i (i=1). Number at the 2nd position (i=2) is 1, and i (i=2) is divisible by 1.
题目:这道题给了我们1到N,总共N个正数,然后定义了一种优美排列方式,对于该排列中的所有数,如果数字可以整除下标,或者下标可以整除数字,那么我们就是优美排列,让我们求出所有优美排列的个数。
思路:pos表示下标,排列完成,并记录排列位置,visited是否被访问,使用回溯。在进行下一步的搜索的时候条件
为 pos%i ==0 || i%pos == 0 && visited[i] = 0 没有被访问过并且可以被收集。收集条件为pso>n。
public class Solution { int count = 0; public int countArrangement(int N) { if(N == 0) return 0; int[] visited = new int[N+1]; helper(visited,1,N); return count; } public void helper(int[] visited,int pos, int n){ if(pos>n){ count ++; return; } for(int i=1;i<=n;i++){ if(visited[i] == 0 && (pos%i==0 || i%pos==0)){ visited[i]=1; helper(visited,pos+1,n); visited[i]=0; } } } }