斯坦福机器学习实现与分析之一(前言)

  自去年底开始学习Andrew Ng的机器学习公开课,欲依其课件试着实现部分算法以加深理解,然在此过程中遇到部分问题,或为程序实现,或为算法理解。故而准备将此课程整理,并记录自己的理解,或对或错可共同讨论。

  此课程主要包括三部分:监督学习算法、无监督学习算法以及学习理论。监督学习部分讲了回归、生成学习算法与SVM;无监督学习则讲了K-means,MOG,EM,PCA,ICA以及增强学习等算法;学习理论则是讲解算法的评估,模型与特征的选择等方法。此处课程整理的顺序将与原讲义相同。

  另外,考虑此处主要目的在于分析和理解算法,将主要采用matlab来实现,以方便矩阵和向量运算以及结果显示等。

  线性回归

时间: 2024-10-05 02:33:47

斯坦福机器学习实现与分析之一(前言)的相关文章

斯坦福机器学习实现与分析之二(线性回归)

回归问题提出 首先需要明确回归问题的根本目的在于预测.对于某个问题,一般我们不可能测量出每一种情况(工作量太大),故多是测量一组数据,基于此数据去预测其他未测量数据. 比如课程给出的房屋面积.房间数与价格的对应关系,如下表: 若要测量出所有情况,不知得测到猴年马月了.有了上面这一组测量数据,我们要估计出一套房子(如2800平方英尺5个房间)的价格,此时回归算法就可以荣耀登场了. 回归算法推导 有了上面这个问题,如何来估计房子的价格呢?首先需要建立模型,一种最简单的模型就是线性模型了,写成函数就是

斯坦福机器学习实现与分析之四(广义线性模型)

指数分布族 首先需要提及下指数分布族,它是指一系列的分布,只要其概率密度函数可以写成下面这样的形式: \(\begin{aligned} p(y;\eta)=b(y)exp(\eta^TT(y)-a(\eta))\end{aligned}\) 一般的很多分布(如高斯分布,泊松分布,二项式分布,伽马分布等)都属于指数分布族.该分布族有很多良好的特性,参见<Generalized Linear Models (2nd ed.)>一书3.3节. 广义线性模型构建假设 广义线性模型主要基于以下假设:

斯坦福机器学习实现与分析之六(朴素贝叶斯)

朴素贝叶斯(Naive Bayes)适用于离散特征的分类问题,对于连续问题则需将特征离散化后使用.朴素贝叶斯有多元伯努利事件模型和多项式事件模型,在伯努利事件模型中,特征每一维的值只能是0或1,而多项式模型中特征每一维的值可取0到N之间的整数,因此伯努利模型是多项式模型的一种特例,下面的推导就直接使用伯努利模型. 朴素贝叶斯原理推导 与GDA类似,朴素贝叶斯对一个测试样本分类时,通过比较p(y=0|x)和p(y=1|x)来进行决策.根据贝叶斯公式: \( \begin{aligned} p(y=

cs229 斯坦福机器学习笔记(一)

前言 说到机器学习,很多人推荐的学习资料就是斯坦福Andrew Ng的cs229,有相关的视频和讲义.不过好的资料 != 好入门的资料,Andrew Ng在coursera有另外一个机器学习课程,更适合入门.课程有video,review questions和programing exercises,视频虽然没有中文字幕,不过看演示的讲义还是很好理解的(如果当初大学里的课有这么好,我也不至于毕业后成为文盲..).最重要的就是里面的programing exercises,得理解透才完成得来的,毕

斯坦福机器学习课程汇总

斯坦福机器学习课程汇总 前言 首先感谢吴恩达建立Coursera这样一个优秀的在线学习平台,以及他发布在这个平台上的机器学习课程. 这门课程将整个机器学习领域的基础知识,用浅显易懂的方式,深入浅出的进行了介绍.使得一个拥有高中数学知识的学生也能听得明白. 如果你想要涉足机器学习.人工智能领域,或者对这一领域有浓厚的兴趣想要深入了解,那么你会发现很多机器学习入门课程推荐的资料中,都有吴恩达老师的这一系列课程.甚至在大多数资料中,都把这门课放在了首选的位置上. 因此,我把吴恩达老师的课程整理成了Ma

斯坦福机器学习公开课---1.机器学习简单介绍

斯坦福机器学习公开课---1. 机器学习简单介绍 1.1  介绍 机器学习流行原因--- 1)      由人工智能AI发展来的一个领域 2)      是计算机需要开发的一项新的能力,涉及工业和基础学科中的很多内容. 应用学习算法,如设计自主机器人,计算生物学和其他被机器学习影响的领域. 1.2  机器学习应用 1)        数据挖掘 网站点击流数据.电子医疗记录.计算生物学和工程学. 2)        无法手动进行编程的领域 自动直升机.手写体识别.自然语言处理NLP和计算机视觉.

斯坦福机器学习公开课学习笔记(1)—机器学习的动机与应用

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 斯坦福机器学习公开课差不多是网上能找到的最好的机器学习入门课程了.现在一共有20节课放到网络上,博主是在网易公开课学的,那里的视频有中文字幕然后课件也很全. (地址:http://v.163.com/special/opencourse/machinelearning.html) 主讲师Andrew Ng(已经被百度诏安了)是华裔科学家,看他的课特别有亲切感.感觉他们的课跟国内老师的课区别还是挺大的

斯坦福机器学习

---title: 斯坦福机器学习-线性回归photos: - http://7xrw7v.com1.z0.glb.clouddn.com/bb2cf32cadac65e934ab587c5f456329.pngtags: - 斯坦福机器学习date: 2016-09-05 16:34:34--- 摘要: - 单变量线性回归- 代价函数- 梯 度 下 降- 学习率- 多 变 量 线 性 回 归- 特 征 缩 放- 多 项 式 回 归- 正 规 方 程 <!--more--> 不积跬步,无以至千

python好书推荐:【A028】[异步图书].Python机器学习:预测分析核心算法

Python机器学习:预测分析核心算法pdf获取方式:点这里 请注意,本并没有直接告诉薇姬,他认为她是一个具有奉献精神和坚定信念的人.然而,对于薇姬来说,她不难承认自己具备这些特征,也很容易将其应用于自己的工作中.即使薇姬认为自己并不具备奉献精神和坚定信念,也无损这种新关系.Python机器学习:预测分析核心算法. 不管薇姬的自我评价如何,本说的都是实话,所以他的观点在最坏的情况下则会被忽视,在最好的情况下则会促使薇姬对自己(和本)感觉良好.基于人的本性,即便薇姬在现实中并不具有奉献精神和坚定信