MapReduce中Map数量的控制

InputFormat这个类是用来处理Map的输入数据的,任务开始时,InputFormat先将HDFS里所有输入文件里的数据分割成逻辑上的InputSpilt对象

这里的split是HDFS中block的部分或者一整块或几个快中的数据的逻辑分割,一个split对应于一个Map,所以Map的数量是由split的数量决定的。

那么怎样去确定InputSpilt的个数呢,下面列出于split个数相关的配置参数:

numSplits:来自job.getNumMapTasks(),即在job启动时用org.apache.hadoop.mapred.JobConf.setNumMapTasks(int n)设置的值,给M-R框架的Map数量的提示。

minSplitSize:默认为1,可由子类复写函数protected void setMinSplitSize(long minSplitSize) 重新设置。一般情况下,都为1,特殊情况除外

blockSize:HDFS的块大小,默认为64M,一般大的HDFS都设置成128M。

long goalSize = totalSize / (numSplits == 0 ? 1 : numSplits);
long minSize = Math.max(job.getLong("mapred.min.split.size", 1), minSplitSize);

for (FileStatus file: files) {
  Path path = file.getPath();
  FileSystem fs = path.getFileSystem(job);
  if ((length != 0) && isSplitable(fs, path)) {
    long blockSize = file.getBlockSize();
    long splitSize = computeSplitSize(goalSize, minSize, blockSize);

    long bytesRemaining = length;
    while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
      String[] splitHosts = getSplitHosts(blkLocations,length-bytesRemaining, splitSize, clusterMap);
      splits.add(new FileSplit(path, length-bytesRemaining, splitSize, splitHosts));
      bytesRemaining -= splitSize;
    }

    if (bytesRemaining != 0) {
      splits.add(new FileSplit(path, length-bytesRemaining, bytesRemaining, blkLocations[blkLocations.length-1].getHosts()));
    }
  } else if (length != 0) {
    String[] splitHosts = getSplitHosts(blkLocations,0,length,clusterMap);
    splits.add(new FileSplit(path, 0, length, splitHosts));
  } else {
    //Create empty hosts array for zero length files
    splits.add(new FileSplit(path, 0, length, new String[0]));
  }
}

return splits.toArray(new FileSplit[splits.size()]);

protected long computeSplitSize(long goalSize, long minSize, long blockSize) {
    return Math.max(minSize, Math.min(goalSize, blockSize));
}

这是关于split个数的hadoop源码。

MapReduce中Map数量的控制

时间: 2024-11-08 18:29:26

MapReduce中Map数量的控制的相关文章

mapreduce 中 map数量与文件大小的关系

学习mapreduce过程中, map第一个阶段是从hdfs 中获取文件的并进行切片,我自己在好奇map的启动的数量和文件的大小有什么关系,进过学习得知map的数量和文件切片的数量有关系,那文件的大小和切片的数量的有什么关系 ,下面我就进入Hadoop的源代码进行研究一下 文件的大小和切片的数量有什么关系. 文件获取和切片和一个InputFormat 这个抽象类有关系 ,这个抽象类 只有两个抽象的方法 分别是 第一个方法是用来过去切片,第二方法使用获取文件.获取切片与第一个方法有关,我们进入研究

关于Mapreduce On Yarn中Map数量的设置

同事最近对MR on Yarn中Map数量的一个小的研究,描述如下: 在新版MapReduce 中即 MR on yarn中,不支持设置Map数量. Map的数量是由MinInputSplitSize决定的,公式: Map的数量 = TotalSize / MinInputSplitSize 要想控制Map的数量,可以通过控制MinInputSplitSize大小来控制Map数量. 如果设置的MinInputSplitSize大于BlockSize,MinInputSplitSize即为设置的值

【Hadoop】三句话告诉你 mapreduce 中MAP进程的数量怎么控制?

1.果断先上结论 1.如果想增加map个数,则设置mapred.map.tasks 为一个较大的值. 2.如果想减小map个数,则设置mapred.min.split.size 为一个较大的值. 3.如果输入中有很多小文件,依然想减少map个数,则需要将小文件merger为大文件,然后使用准则2. 2.原理与分析过程 看了很多博客,感觉没有一个说的很清楚,所以我来整理一下. 先看一下这个图 输入分片(Input Split):在进行map计算之前,mapreduce会根据输入文件计算输入分片(i

mapreduce中map数的测试

默认的map数是有逻辑的split的数量决定的,根据源码切片大小的计算公式:Math.max(minSize, Math.min(maxSize, blockSize)): 其中: minsize:默认值:1 配置参数: mapreduce.input.fileinputformat.split.minsize maxsize:默认值:Long.MAXValue 配置参数:mapreduce.input.fileinputformat.split.maxsize blocksize:值为hdfs

hadoop中map和reduce的数量设置问题

转载http://my.oschina.net/Chanthon/blog/150500 map和reduce是hadoop的核心功能,hadoop正是通过多个map和reduce的并行运行来实现任务的分布式并行计算,从这个观点来看,如果将map和reduce的数量设置为1,那么用户的任务就没有并行执行,但是map和reduce的数量也不能过多,数量过多虽然可以提高任务并行度,但是太多的map和reduce也会导致整个hadoop框架因为过度的系统资源开销而使任务失败.所以用户在提交map/re

MapReduce中TextInputFormat分片和读取分片数据源码级分析

InputFormat主要用于描述输入数据的格式(我们只分析新API,即org.apache.hadoop.mapreduce.lib.input.InputFormat),提供以下两个功能: (1)数据切分:按照某个策略将输入数据切分成若干个split,以便确定MapTask个数以及对应的split: (2)为Mapper提供输入数据:读取给定的split的数据,解析成一个个的key/value对,供mapper使用. InputFormat有两个比较重要的方法:(1)List<InputSp

【转】Hadoop在MapReduce中使用压缩详解

原文链接 http://www.cnblogs.com/ggjucheng/archive/2012/04/22/2465580.html#top hadoop对于压缩文件的支持 hadoop对于压缩格式的是透明识别,我们的MapReduce任务的执行是透明的,hadoop能够自动为我们 将压缩的文件解压,而不用我们去关心. 如果我们压缩的文件有相应压缩格式的扩展名(比如lzo,gz,bzip2等),hadoop就会根据扩展名去选择解码器解压. hadoop对每个压缩格式的支持,详细见下表:  

Hadoop初学指南(8)--MapReduce中的Combiner操作

本文主要介绍了MapReduce中的Combiner操作. 在MapReduce的执行步骤中,我们一共分了8步,其中Map中的最后一步规约操作就是今天要讲的Combiner. 首先看一下前文中的计数器: 我们可以发现,其中有两个计数器:Combine output records和Combine input records,他们的计数都是0,这是因为我们在代码中没有进行规约操作. 现在我们加入规约操作. 在前文代码(参看http://xlows.blog.51cto.com/5380484/14

MapReduce中Shuffle过程整理

MapReduce中的Shuffle过程分为Map端和Reduce端两个过程. Map端: 1.(Hash Partitioner)执行完Map函数后,根据key进行hash,并对该结果进行Reduce的数量取模(该键值对将会由某个reduce端处理)得到一个分区号. 2.(Sort Combiner)将该键值对和分区号序列化之后的字节写入到内存缓存区(大小为100M,装载因子为0.8)中,当内存缓冲区的大小超过100*0.8 = 80M的时候,将会spill(溢出):在溢出之前会在内存缓冲区中