算法 - 二分查找(折半查找)

1、 解决问题

从有序的数据中查找元素,存储结构一般为数组之类的。(假定下面讨论的都是数据都是从小到大排序的数据)。

2 、思路

把待查找数据值与查找范围的中间元素值进行比较,会有如下情况出现:

1)     待查找数据值与中间元素值正好相等,则放回中间元素值的索引。

2)     待查找数据值比中间元素值小,则以查找范围的前半部分作为新的查找范围,执行1),直到找到相等的值。

3)     待查找数据值比中间元素值大,则以查找范围的后半部分作为新的查找范围,执行1),直到找到相等的值

4)     如果最后找不到相等的值,则返回错误提示信息。

3、代码

非递归方式:

int SearchIndex(int data[], int iLen, int iValue)
{
    int iBegin = 0;
    int iEnd = iLen - 1;
    while (iBegin < iEnd)
    {
        int iMid = (iBegin + iEnd) / 2;
        if (data[iMid] == iValue)
        {
            return iMid;
        }
        else if (data[iMid] < iValue)
        {
            iBegin = iMid + 1;
        }
        else {
            iEnd = iMid - 1;
        }
    }

    return -1;
}

递归方式:

int IterSearchIndex(int data[], int iLen, int iValue, int iBegin, int iEnd)
{
    int iMid = (iBegin + iEnd) / 2;
    if (iMid < 0 || iMid >= iLen)
    {
        return -1;
    }

    if (data[iMid] == iValue)
    {
        return iMid;
    }
    else if (data[iMid] < iValue)
    {
        return IterSearchIndex(data, iLen, iMid + 1, iEnd);
    }
    else if (data[iMid] > iValue)
    {
        return IterSearchIndex(data, iLen, iBegin, iMid - 1);
    }
}

4、分析

将数组数据建立二叉树:中间值为二叉树的根,前半部分为左子树,后半部分为右子树。折半查找法的查找次数正好为该值所在的层数。

查询速度较快,时间复杂度为O(n)

时间: 2024-10-20 14:36:56

算法 - 二分查找(折半查找)的相关文章

二分查找/折半查找算法

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表.重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功. class Pr

(java)有序表查找——折半查找,插值查找,斐波那契查找

有序表查找 /* 主函数 */ public class OrderTableSearch { public static void main(String[] args) { int [] a= {0,1,16,24,35,47,59,62,73,88,99}; System.out.println(FibonacciSearch(a, 10, 88)); System.out.println(InsertKeySearch(a, 10, 88)); System.out.println(Bi

顺序查找,折半查找,二叉排序树的建立,哈希表的建立

以下四个验证性实验都做. (1)顺序查找验证 (2)折半查找验证 (3)二叉排序树的建立 (4)哈希表的建立 #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<string.h> #include<algorithm> using namespace std; class dijiuzhang { public: int a[1

java 二分查找 - 折半查找算法

二分查找: 这个算法是比较简单的,容易理解的.这个算法是对有序的数组进行查找,所以想要使用这个算法那么 首先先要对数组进行排序. 其实有三个指针,开始指针,末尾指针,中间指针,来开始.折半查找. 步骤如下: 1.确定三个指针,start,end,middleIndex. 2.判断start<=end,如果满足,就执行这个方法,不满足,就返回,找不到. 3.在2的前提下,我们对其折半查找,middleIndex = start+end >> 1,取中间值. 4.判断中间位置的值和目标值是否

Java 实现二分查找\折半查找

二分查找又称折半查找,优点是比较次数少,查找速度快:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表. 该算法要求: 1.  必须采用顺序存储结构. 2.  必须按关键字大小有序排列. 该算法时间复杂度最坏为:O(logn) 注意点有mid.low.high 其Java实现代码如下(该代码有缺陷,只是基本实现,有待完善): public class BinarySearch { /** * @param args */ public static

二分查找/折半查找

二分查找又叫折半查找. 前提:数组是有序的. 思想:1.每次都拿中间的数的key进行比较,如果相等,找到: 2.如果key > 中间数,说明key在中间数的右边,接着拿右边的中间数和key比较: 3.如果key < 中间数,说明key在中间数的左边,接着拿左边的中间数和key比较: 4.循环上述过程: 啥也不说了,上代码: 1 #include <stdio.h> 2 3 int main(int argc, const char * argv[]) { 4 5 // 定义数组 6

iOS算法(五)之折半查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表. 折半查找法的两种实现 折半查找法思想: 在有序表中,把待查找数据值与查找范围的中间元素值进行比较,会有三种情况出现: 1)     待查找数据值与中间元素值正好相等,则放回中间元素值的索引. 2)     待查找数据值比中间元素值小,则以整个查找范围的前半部分作为新的查找范围,执行1),直到找到相等的值. 3)     待查找数据值

C++算法学习(1)--折半查找(递归和非递归实现)

1 #include "stdafx.h" 2 #include <iostream> 3 using namespace std; //折半查找(非递归调用) 6 bool binarySearch(int *arr,int low,int high,int key) 7 { 8 while (low<=high) {//必须为有= 9 int mid = (low + high) / 2; 10 if (arr[mid] > key) { 11 high =

二分法查找(折半查找)

顺序查找并没有对表中的关键字域的顺序做出任何假设,与顺序查找不同,在折半查找中,表中的记录是按关键字域有序排列的,其比较会出现下面三种结果: searchumn< list[middle].key,此时,无需考虑位于list[middle]和list[n-1]之间的记录,而继续查找位于list[0]和list[middle-1]间的记录. searchnum=list[middle].key,此时,查找成功,结束查找. searchnum>list[middle].key,此时,无需考虑位于l

二分查找/折半查找(C++实现)

要求:给定已按升序排好序的n个元素a[0:n-1],现要在这n个元素中找出一特定元素x. 分析: 该问题的规模缩小到一定的程度就可以容易地解决: 如果n=1即只有一个元素,则只要比较这个元素和x就可以确定x是否在表中.因此这个问题满足分治法的第一个适用条件 该问题可以分解为若干个规模较小的相同问题; 分解出的子问题的解可以合并为原问题的解: 分解出的各个子问题是相互独立的. 比较x和a的中间元素a[mid], 若x=a[mid],则x在L中的位置就是mid: 如果x<a[mid],则x在a[mi