html+js+css+接口交互+echarts实例一枚

1. 解决了echarts的展现

2. 解决了echarts全屏幕展现(width:100%;height:100%;)

3. 解决了向接口取数据问题

<!DOCTYPE html>
<html>

<head>
    <meta charset="utf-8">
    <title>xxx可视化数据中心</title>
    <!-- 引入 echarts.js -->
    <script src="/static/echarts.min.js"></script>
    <script src="/static/china.js"></script>
</head>
<style>
    html,
    body {
        width: 100%;
        height: 100%;
        margin: 0;
    }
</style>

<body>
    <!-- 为ECharts准备一个具备大小(宽高)的Dom -->
    <div id="left" style="width: 75%;height:100%;float:left;"></div>
    <div id="rtop" style="width: 25%;height:50%;float:left;background:#404a59;display:none;">
        <p class="voice" style="font-size:24px;font-weight:bold;color:#3dbfda;margin-top:100px;">今日请求总量:<span class="voiceCount" style="color:#ddb926"></span></p>
        <p class="device" style="font-size:24px;font-weight:bold;color:#3dbfda">今日活跃数:<span class="deviceCount" style="color:#ddb926"></span></p>
        <p class="city" style="font-size:24px;font-weight:bold;color:#3dbfda">今日活跃城市数:<span class="cityCount" style="color:#ddb926"></span></p>
    </div>
    <div id="right" style="width: 25%;height:50%;float:left;"></div>
    <script type="text/javascript">
        // 基于准备好的dom,初始化echarts实例
        var myChart = echarts.init(document.getElementById(‘left‘));
        var barChart = echarts.init(document.getElementById(‘right‘));
        // 指定图表的配置项和数据

        var data = [];
        var geoCoordMap = {
            ‘海门‘: [121.15, 31.89],
            ‘鄂尔多斯‘: [109.781327, 39.608266],
            ‘招远‘: [120.38, 37.35],
            ‘舟山‘: [122.207216, 29.985295],
            ‘齐齐哈尔‘: [123.97, 47.33],
            ‘盐城‘: [120.13, 33.38],
            ‘赤峰‘: [118.87, 42.28],
            ‘青岛‘: [120.33, 36.07],
            ‘乳山‘: [121.52, 36.89],
            ‘金昌‘: [102.188043, 38.520089],
            ‘泉州‘: [118.58, 24.93],
            ‘莱西‘: [120.53, 36.86],
            ‘日照‘: [119.46, 35.42],
            ‘胶南‘: [119.97, 35.88],
            ‘南通‘: [121.05, 32.08],
            ‘拉萨‘: [91.11, 29.97],
            ‘云浮‘: [112.02, 22.93],
            ‘梅州‘: [116.1, 24.55],
            ‘文登‘: [122.05, 37.2],
            ‘上海‘: [121.48, 31.22],
            ‘攀枝花‘: [101.718637, 26.582347],
            ‘威海‘: [122.1, 37.5],
            ‘承德‘: [117.93, 40.97],
            ‘厦门‘: [118.1, 24.46],
            ‘汕尾‘: [115.375279, 22.786211],
            ‘潮州‘: [116.63, 23.68],
            ‘丹东‘: [124.37, 40.13],
            ‘太仓‘: [121.1, 31.45],
            ‘曲靖‘: [103.79, 25.51],
            ‘烟台‘: [121.39, 37.52],
            ‘福州‘: [119.3, 26.08],
            ‘瓦房店‘: [121.979603, 39.627114],
            ‘即墨‘: [120.45, 36.38],
            ‘抚顺‘: [123.97, 41.97],
            ‘玉溪‘: [102.52, 24.35],
            ‘张家口‘: [114.87, 40.82],
            ‘阳泉‘: [113.57, 37.85],
            ‘莱州‘: [119.942327, 37.177017],
            ‘湖州‘: [120.1, 30.86],
            ‘汕头‘: [116.69, 23.39],
            ‘昆山‘: [120.95, 31.39],
            ‘宁波‘: [121.56, 29.86],
            ‘湛江‘: [110.359377, 21.270708],
            ‘揭阳‘: [116.35, 23.55],
            ‘荣成‘: [122.41, 37.16],
            ‘连云港‘: [119.16, 34.59],
            ‘葫芦岛‘: [120.836932, 40.711052],
            ‘常熟‘: [120.74, 31.64],
            ‘东莞‘: [113.75, 23.04],
            ‘河源‘: [114.68, 23.73],
            ‘淮安‘: [119.15, 33.5],
            ‘泰州‘: [119.9, 32.49],
            ‘南宁‘: [108.33, 22.84],
            ‘营口‘: [122.18, 40.65],
            ‘惠州‘: [114.4, 23.09],
            ‘江阴‘: [120.26, 31.91],
            ‘蓬莱‘: [120.75, 37.8],
            ‘韶关‘: [113.62, 24.84],
            ‘嘉峪关‘: [98.289152, 39.77313],
            ‘广州‘: [113.23, 23.16],
            ‘延安‘: [109.47, 36.6],
            ‘太原‘: [112.53, 37.87],
            ‘清远‘: [113.01, 23.7],
            ‘中山‘: [113.38, 22.52],
            ‘昆明‘: [102.73, 25.04],
            ‘寿光‘: [118.73, 36.86],
            ‘盘锦‘: [122.070714, 41.119997],
            ‘长治‘: [113.08, 36.18],
            ‘深圳‘: [114.07, 22.62],
            ‘珠海‘: [113.52, 22.3],
            ‘宿迁‘: [118.3, 33.96],
            ‘咸阳‘: [108.72, 34.36],
            ‘铜川‘: [109.11, 35.09],
            ‘平度‘: [119.97, 36.77],
            ‘佛山‘: [113.11, 23.05],
            ‘海口‘: [110.35, 20.02],
            ‘江门‘: [113.06, 22.61],
            ‘章丘‘: [117.53, 36.72],
            ‘肇庆‘: [112.44, 23.05],
            ‘大连‘: [121.62, 38.92],
            ‘临汾‘: [111.5, 36.08],
            ‘吴江‘: [120.63, 31.16],
            ‘石嘴山‘: [106.39, 39.04],
            ‘沈阳‘: [123.38, 41.8],
            ‘苏州‘: [120.62, 31.32],
            ‘茂名‘: [110.88, 21.68],
            ‘嘉兴‘: [120.76, 30.77],
            ‘长春‘: [125.35, 43.88],
            ‘胶州‘: [120.03336, 36.264622],
            ‘银川‘: [106.27, 38.47],
            ‘张家港‘: [120.555821, 31.875428],
            ‘三门峡‘: [111.19, 34.76],
            ‘锦州‘: [121.15, 41.13],
            ‘南昌‘: [115.89, 28.68],
            ‘柳州‘: [109.4, 24.33],
            ‘三亚‘: [109.511909, 18.252847],
            ‘自贡‘: [104.778442, 29.33903],
            ‘吉林市‘: [126.57, 43.87],
            ‘阳江‘: [111.95, 21.85],
            ‘泸州‘: [105.39, 28.91],
            ‘西宁‘: [101.74, 36.56],
            ‘宜宾‘: [104.56, 29.77],
            ‘呼和浩特‘: [111.65, 40.82],
            ‘成都‘: [104.06, 30.67],
            ‘大同‘: [113.3, 40.12],
            ‘镇江‘: [119.44, 32.2],
            ‘桂林‘: [110.28, 25.29],
            ‘张家界‘: [110.479191, 29.117096],
            ‘宜兴‘: [119.82, 31.36],
            ‘北海‘: [109.12, 21.49],
            ‘西安‘: [108.95, 34.27],
            ‘金坛‘: [119.56, 31.74],
            ‘东营‘: [118.49, 37.46],
            ‘牡丹江‘: [129.58, 44.6],
            ‘遵义‘: [106.9, 27.7],
            ‘绍兴‘: [120.58, 30.01],
            ‘扬州‘: [119.42, 32.39],
            ‘常州‘: [119.95, 31.79],
            ‘潍坊‘: [119.1, 36.62],
            ‘重庆‘: [106.54, 29.59],
            ‘台州‘: [121.420757, 28.656386],
            ‘南京‘: [118.78, 32.04],
            ‘滨州‘: [118.03, 37.36],
            ‘贵阳‘: [106.71, 26.57],
            ‘无锡‘: [120.29, 31.59],
            ‘本溪‘: [123.73, 41.3],
            ‘克拉玛依‘: [84.77, 45.59],
            ‘渭南‘: [109.5, 34.52],
            ‘马鞍山‘: [118.48, 31.56],
            ‘宝鸡‘: [107.15, 34.38],
            ‘焦作‘: [113.21, 35.24],
            ‘句容‘: [119.16, 31.95],
            ‘北京‘: [116.46, 39.92],
            ‘徐州‘: [117.2, 34.26],
            ‘衡水‘: [115.72, 37.72],
            ‘包头‘: [110, 40.58],
            ‘绵阳‘: [104.73, 31.48],
            ‘乌鲁木齐‘: [87.68, 43.77],
            ‘枣庄‘: [117.57, 34.86],
            ‘杭州‘: [120.19, 30.26],
            ‘淄博‘: [118.05, 36.78],
            ‘鞍山‘: [122.85, 41.12],
            ‘溧阳‘: [119.48, 31.43],
            ‘库尔勒‘: [86.06, 41.68],
            ‘安阳‘: [114.35, 36.1],
            ‘开封‘: [114.35, 34.79],
            ‘济南‘: [117, 36.65],
            ‘德阳‘: [104.37, 31.13],
            ‘温州‘: [120.65, 28.01],
            ‘九江‘: [115.97, 29.71],
            ‘邯郸‘: [114.47, 36.6],
            ‘临安‘: [119.72, 30.23],
            ‘兰州‘: [103.73, 36.03],
            ‘沧州‘: [116.83, 38.33],
            ‘临沂‘: [118.35, 35.05],
            ‘南充‘: [106.110698, 30.837793],
            ‘天津‘: [117.2, 39.13],
            ‘富阳‘: [119.95, 30.07],
            ‘泰安‘: [117.13, 36.18],
            ‘诸暨‘: [120.23, 29.71],
            ‘郑州‘: [113.65, 34.76],
            ‘哈尔滨‘: [126.63, 45.75],
            ‘聊城‘: [115.97, 36.45],
            ‘芜湖‘: [118.38, 31.33],
            ‘唐山‘: [118.02, 39.63],
            ‘平顶山‘: [113.29, 33.75],
            ‘邢台‘: [114.48, 37.05],
            ‘德州‘: [116.29, 37.45],
            ‘济宁‘: [116.59, 35.38],
            ‘荆州‘: [112.239741, 30.335165],
            ‘宜昌‘: [111.3, 30.7],
            ‘义乌‘: [120.06, 29.32],
            ‘丽水‘: [119.92, 28.45],
            ‘洛阳‘: [112.44, 34.7],
            ‘秦皇岛‘: [119.57, 39.95],
            ‘株洲‘: [113.16, 27.83],
            ‘石家庄‘: [114.48, 38.03],
            ‘莱芜‘: [117.67, 36.19],
            ‘常德‘: [111.69, 29.05],
            ‘保定‘: [115.48, 38.85],
            ‘湘潭‘: [112.91, 27.87],
            ‘金华‘: [119.64, 29.12],
            ‘岳阳‘: [113.09, 29.37],
            ‘长沙‘: [113, 28.21],
            ‘衢州‘: [118.88, 28.97],
            ‘廊坊‘: [116.7, 39.53],
            ‘菏泽‘: [115.480656, 35.23375],
            ‘合肥‘: [117.27, 31.86],
            ‘武汉‘: [114.31, 30.52],
            ‘大庆‘: [125.03, 46.58],
            ‘台北市‘: [121.56, 25.1],
            ‘新竹市‘: [121.01, 24.47],
            ‘黔西南布依族苗族自治州‘: [104.9043700000, 25.0898800000],
            ‘伊犁哈萨克自治州‘: [81.3241600000, 43.9168900000],
            ‘西双版纳傣族自治州‘: [100.79, 22.00],
            ‘黔东南苗族侗族自治州‘: [108.3, 27.3],
            ‘恩施土家族苗族自治州‘: [109.5, 30.3],
            ‘楚雄彝族自治州‘: [101.5276700000, 25.0449500000],
            ‘中卫‘: [105.18, 37.51],
            ‘黄冈‘: [114.87, 30.45],
            ‘塔城‘: [82.98, 46.74],
            ‘呼伦贝尔‘: [119.7658400000, 49.2116300000],
            ‘信阳‘: [114.09, 32.14],
            ‘周口‘: [114.69, 33.62],
            ‘红河哈尼族彝族自治州‘: [103.37, 23.36],
            ‘怀化‘: [110.00, 27.56],
            ‘忻州‘: [112.73, 38.41],
            ‘衡阳‘: [112.57, 26.89],
            ‘贺州‘: [111.56, 24.40],
            ‘宁德‘: [119.54, 26.66],
            ‘巴彦淖尔‘: [107.38, 40.74],
            ‘漯河‘: [114.01, 33.58],
            ‘赣州‘: [114.93, 25.83],
            ‘绥化‘: [126.97, 46.65],
            ‘吕梁‘: [111.14, 37.51],
            ‘内江‘: [105.06, 29.58],
            ‘淮南‘: [116.99, 32.62],
            ‘河池‘: [108.08, 24.69],
            ‘眉山‘: [103.84, 30.07],
            ‘抚州‘: [116.35, 27.94],
            ‘潜江‘: [112.91, 30.36],
            ‘哈密‘: [93.51, 42.81],
            ‘新乡‘: [113.9267500000, 35.3032300000],
            ‘汉中‘: [107.0237700000, 33.0676100000],
            ‘阜阳‘: [115.8149500000, 32.8896300000],
            ‘广元‘: [105.8435700000, 32.4354900000],
            ‘安庆‘: [117.0635400000, 30.5429400000],
            ‘达州‘: [107.4679100000, 31.2086400000],
            ‘文山壮族苗族自治州‘: [104.2150400000, 23.3984900000],
            ‘商洛‘: [109.94, 33.87],
            ‘宜春‘: [114.41, 27.81],
            ‘黄石‘: [115.0389000000, 30.1995300000],
            ‘益阳‘: [112.3551600000, 28.5539100000],
            ‘莆田‘: [119.0077100000, 25.4540000000],
            ‘漳州‘: [117.6472500000, 24.5134700000],
            ‘上饶‘: [117.9435700000, 28.4546300000],
            ‘六盘水‘: [104.8302300000, 26.5933600000],
            ‘晋城‘: [112.8511300000, 35.4903900000],
            ‘十堰‘: [110.7980100000, 32.6291800000]
        };

        var convertData = function (data) {
            var res = [];
            for (var i = 0; i < data.length; i++) {
                var geoCoord = geoCoordMap[data[i].name];
                if (geoCoord) {
                    res.push({
                        name: data[i].name,
                        value: geoCoord.concat(data[i].value)
                    });
                }
            }
            return res;
        };
        var barValue = function (data) {
            var res = [];
            for (var i = 0; i < data.length; i++) {
                var geoCoord = geoCoordMap[data[i].name];
                if (geoCoord) {
                    res.push({
                        value: data[i].value
                    });
                }
            }
            return res;
        };
        var barName = function (data) {
            var res = [];
            for (var i = 0; i < data.length; i++) {
                var geoCoord = geoCoordMap[data[i].name];
                if (geoCoord) {
                    res.push({
                        value: data[i].name
                    });
                }
            }
            return res;
        };
        function randomData() {
            return Math.round(Math.random() * 1000);
        }
        option = {
            backgroundColor: ‘#404a59‘,
            title: {
                text: ‘ROKID语音请求量全国分布‘,
                left: ‘center‘,
                top: "20",
                textStyle: {
                    color: ‘#fff‘,
                    fontSize: "28"
                }
            },
            tooltip: {
                trigger: ‘item‘,
                formatter: function (params) {
                    return params.name + ‘ : ‘ + params.value[2] + ‘次‘;
                }
            },
            geo: {
                map: ‘china‘,
                label: {
                    emphasis: {
                        show: false
                    }
                },
                roam: true,
                itemStyle: {
                    normal: {
                        //地图色块
                        areaColor: ‘#323c48‘,
                        borderColor: ‘#111‘
                    },
                    emphasis: {
                        //地图hover色块
                        areaColor: ‘#2a333d‘
                    }
                }
            },
            color: [‘#3398DB‘],
            visualMap: {
                min: 0,
                max: 15000,
                left: ‘left‘,
                top: ‘bottom‘,
                text: [‘高‘, ‘低‘],           // 文本,默认为数值文本
                calculable: true,
                inRange: {
                    color: [‘#3dbfda‘, ‘#eac736‘, ‘#FE2E2E‘]
                },
                show: false
            },
            series: [

                {
                    name: ‘访问量‘,
                    type: ‘scatter‘,
                    coordinateSystem: ‘geo‘,
                    data: convertData(data),
                    symbolSize: function (val) {
                        return 8;
                    },
                    label: {
                        normal: {
                            formatter: ‘{b}‘,
                            position: ‘right‘,
                            show: false
                        },
                        emphasis: {
                            show: true
                        }
                    },
                    itemStyle: {
                        normal: {
                            color: ‘#ddb926‘
                        }
                    }
                },
                {
                    name: ‘访问量Top 5‘,
                    type: ‘effectScatter‘,
                    coordinateSystem: ‘geo‘,
                    data: convertData(data.sort(function (a, b) {
                        return b.value - a.value;
                    }).slice(0, 5)),
                    symbolSize: function (val) {
                        return 16;
                    },
                    showEffectOn: ‘render‘,
                    rippleEffect: {
                        brushType: ‘stroke‘,
                        period: 1,
                        scale: 3.5
                    },
                    hoverAnimation: true,
                    label: {
                        normal: {
                            formatter: ‘{b}‘,
                            position: ‘right‘,
                            show: true
                        }
                    },
                    itemStyle: {
                        normal: {
                            //top10颜色
                            color: ‘#3dbfda‘,
                            shadowBlur: 10,
                            shadowColor: ‘#333‘
                        }
                    },
                    zlevel: 1
                }
            ]
        };
        baroption = {
            backgroundColor: ‘#404a59‘,
            color: [‘#3398DB‘],
            title: {
                text: ‘语音请求量TOP10‘,
                left: ‘center‘,
                top: ‘5%‘,
                textStyle: {
                    color: ‘#fff‘
                }
            },
            tooltip: {
                trigger: ‘axis‘,
                axisPointer: {            // 坐标轴指示器,坐标轴触发有效
                    type: ‘shadow‘        // 默认为直线,可选为:‘line‘ | ‘shadow‘
                }
            },
            grid: {
                left: ‘0%‘,
                right: ‘6%‘,
                top: ‘20%‘,
                bottom: ‘10%‘,
                containLabel: true,
                show: false
            },
            xAxis: [
                {
                    type: ‘value‘,
                    position: "top",
                    axisLabel: { textStyle: { color: ‘#aaa‘ } },
                    splitLine: { show: false },
                    axisLine: { show: false },
                    axisTick: { show: false }
                }
            ],
            yAxis: [
                {
                    type: ‘category‘,
                    data: barName(data.sort(function (a, b) {
                        return b.value - a.value;
                    }).slice(0, 10)),
                    inverse: true,
                    axisTick: {
                        alignWithLabel: true
                    },
                    axisLabel: { textStyle: { color: ‘#aaa‘ } },
                    splitLine: { show: false },
                    axisLine: { show: false },
                    axisTick: { show: false }
                }
            ],
            series: [
                {
                    name: ‘语音访问量‘,
                    type: ‘bar‘,
                    barWidth: ‘60%‘,
                    data: barValue(data.sort(function (a, b) {
                        return b.value - a.value;
                    }).slice(0, 10)),
                    itemStyle: {
                        normal: {
                            color: ‘#3dbfda‘
                        }
                    },
                    label: {
                        normal: {
                            show: true,
                            position: ‘right‘
                        }
                    }
                }
            ]
        }
        var getData = function () {
            var url = ‘/api/statistics/city‘;
            var voiceCount = 0,
                deviceCount = 0,
                voiceDOM = document.getElementsByClassName("voiceCount")[0],
                deviceDOM = document.getElementsByClassName("deviceCount")[0],
                cityDOM = document.getElementsByClassName("cityCount")[0],
                outer = document.getElementById("rtop");
            fetch(url, {
                method: ‘GET‘,
                credentials: ‘same-origin‘,
                headers: {
                    ‘Accept‘: ‘application/json‘,
                    ‘Content-Type‘: ‘application/json‘
                }
            }).then((res) => {
                res.json().then((json) => {
                    deviceDOM.innerHTML = json.device_count;
                    cityDOM.innerHTML = json.data.length;
                    data = json.data;
                    data.forEach(function (item) {
                        voiceCount += item.value;
                    })
                    voiceDOM.innerHTML = voiceCount;
                    // 使用刚指定的配置项和数据显示图表。
                    option.series[0].data = convertData(data);
                    option.series[1].data = convertData(data.sort(function (a, b) {
                        return b.value - a.value;
                    }).slice(0, 11));
                    baroption.yAxis[0].data = barName(data.sort(function (a, b) {
                        return b.value - a.value;
                    }).slice(0, 11));
                    baroption.series[0].data = barValue(data.sort(function (a, b) {
                        return b.value - a.value;
                    }).slice(0, 11));
                    myChart.setOption(option);
                    barChart.setOption(baroption);
                    outer.style.display = "block";
                })
            })
        }
        getData();
        var timer = setInterval(function () {
            getData();
        }, 135000)
    </script>
</body>

</html>

接口数据的格式

{
  "data": [
    {
      "name": "金华",
      "value": 23
    },
    {
      "name": "韶关",
      "value": 4
    },
    {
      "name": "福州",
      "value": 32
    }
  ],
  "device_count": 111,
  "errcode": 0,
  "errmsg": ""
}

备注,供以后参考和使用

时间: 2024-10-13 09:58:12

html+js+css+接口交互+echarts实例一枚的相关文章

spring mvc 和ajax异步交互完整实例(转自CSDN) 附下载地址

spring mvc 和ajax异步交互完整实例 spring MVC 异步交互demo: demo下载地址:http://download.csdn.net/download/quincylk/9521375 1.jsp页面: [java] view plain copy print? <%@ page language="java" contentType="text/html; charset=utf-8" pageEncoding="utf-

ASP.net与SQLite数据库通过js和ashx交互(连接和操作)

ASP.net与SQLite数据库通过js和ashx交互(连接和操作): 废话(也是思路):用的是VS2010,打算做网站前后台.由于不喜欢前台语言里加些与html和css和js的其他内容,想实现前后台语言的分离,与前后台通过js的ajax实现交互,故很多百度出来的方法不成立,虽听说ashx过时,但是他实现了我要的效果:即前后台语言不是相互嵌入实现交互,而是通过js实现(有接口就可以).由于领导指定用SQLite,故这两天还折腾了SQLite,不过对于这种小型的网站,它是个很好的选择(不需要部署

HTML+JS+CSS 实现下拉菜单

最近在看视频学习做一些HTML+JS+CSS的实例,第一个是实现下拉菜单. 5.7 制作的思路是:1.静态网页的制作 2.动态特效实现菜单的显示和隐藏(三种方法:css.JavaScript.jQuery) 3.浏览器的兼容问题(低版本IE可能不支持等) 在用css实现时,由于盒子模型有自己默认的margin和padding值,所以要reset. 有一点比较有疑问的实,老师在视频里说position:absolute要和left.top同时使用.这是为什么?在实现的时候,我并没有使用left和t

UIWebView与JS的深度交互

事情的起因还是因为项目需求驱动.折腾了两天,由于之前没有UIWebView与JS交互的经历,并且觉得这次在功能上有一定的创造性,特此留下一点文字,方便日后回顾. 我要实现这样一个需求:按照本地的CSS文件展示一串网络获取的带HTML格式的只有body部分的文本,需要自己拼写完整的HTML.除此之外,还需要禁用获取的HTML文本中自带的 < img > 标签自动加载,并把下载图片的操作放在native端来处理,并通过JS将图片在Cache中的地址返回给UIWebview. 之所以要把图片操作放在

UIWebView与JS的深度交互-b

要实现这样一个需求:按照本地的CSS文件展示一串网络获取的带HTML格式的只有body部分的文本,需要自己拼写完整的 HTML.除此之外,还需要禁用获取的HTML文本中自带的 < img >  标签自动加载,并把下载图片的操作放在native端来处理,并通过JS将图片在Cache中的地址返回给UIWebview.之所以要把图片操作放在native端做的好处在于:1.可以进行本地缓存,下次进入这篇文章可以直接从缓存读取,提高响应速度并且节省用户流量.2.可以实现点击图片放大.保存图片到相册等操作

javascript异步延时加载及判断是否已加载js/css文件

引用就是某一变量(目标)的一个别名,对引用的操作与对变量直接操作完全一样. 引用的声明方法:类型标识符 &引用名=目标变量名: 例如: int a int &b=a; //定义引用b,它是变量a的引用,即别名 #include <stdio.h> void main() { int a = 123; int &b = a; printf("a=%d b=%d\n", a, b); } 执行结果: 实例:引用和变量的关系 #include <io

ASP.NET MVC 4使用Bundle的打包压缩JS/CSS

打包(Bundling)及压缩(Minification)指的是将多个js文件或css文件打包成单一文件并压缩的做法,如此可减少浏览器需下载多个文件案才能完成网页显示的延迟感,同时通过移除JS/CSS文件案中空白.批注及修改JavaScript内部函数.变量名称的压缩手法,能有效缩小文件案体积,提高传输效率,提供使用者更流畅的浏览体验. 在ASP.NET MVC 4中可以使用BundleTable捆绑多个css文件和js文件,以提高网络加载速度和页面解析速度.更为重要的是通过捆绑可以解决IE浏览

js与C++交互

转载:http://zhidao.baidu.com/link?url=LLuWzwMmpfVcQeSGv1CrAfRXpnZaetm9xypqwMW6zxLhhKES-rITAsG0-Ku-bSMAc2nVoSFk1tOJ0biPcQIoHK 1.手动点击网页按钮C++后台响应 2.设置自动触发事件 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/

C语言与MATLAB接口 编程与实例 李传军编着

罗列一下以前自己学习C语言与MATLAB混编的笔记,顺便复习一遍. <C语言与MATLAB接口 编程与实例 李传军编着>(未看完,目前看到P106) 目录P4-8 ****************************************************** C-MEX函数:从MATLAB调用C语言或Fortran语言编写的函数. MEX文件:是一种按一定格式,使用C语言或者FORTRAN语言编写的,由MATLAB解释器自动调用并执行的动态链接函数.在Windows系统中,MEX