第二周:一个简单的时间片轮转多道程序内核代码及分析

吕松鸿+ 原创作品转载请注明出处 + 《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

一、函数调用堆栈

1. 计算机工作的三个法宝

  • 存储程序计算机工作模型,计算机系统最最基础性的逻辑结构;
  • 函数调用堆栈,高级语言得以运行的基础,只有机器语言和汇编语言的时候堆栈机制对于计算机来说并不那么重要,但有了高级语言及函数,堆栈成为了计算机的基础功能;
    • enter
      • pushl %ebp
      • movl %esp,%ebp
    • leave
      • movl %ebp,%esp
      • popl %ebp
    • 函数参数传递机制和局部变量存储
  • 中断,多道程序操作系统的基点,没有中断机制程序只能从头一直运行结束才有可能开始运行其他程序。

2. 堆栈

  • 堆栈是C语言程序运行时必须的一个记录调用路径和参数的空间。

    • 函数条用框架
    • 传递参数
    • 保存返回地址
    • 提供局部变量空间...
  • C语言编译器对堆栈的使用有一套的规则
  • 了解对站存在的目的和编译器对堆栈使用的规则是理解操作系统一些关键性代码的基础。
  • 堆栈相关寄存器:

    esp:堆栈指针(stack pointer),指向系统栈最上面一个栈帧的栈顶

  • ebp: 基址指针(base pointer),指向系统栈最上面一个栈帧的底部
  • cs:eip:指令寄存器(extended instruction pointer),指向下一条等待执行的指令地址

3. 堆栈操作

  • push:以字节为单位将数据(对于32位系统可以是4个字节)压入栈,从高到低按字节依次将数据存入ESP-1、ESP-2、ESP-3、ESP-4的地址单元。
  • pop: 过程与PUSH相反。
  • call: 用来调用一个函数或过程,此时,下一条指令地址会被压入堆栈,以备返回时能恢复执行下条指令。
  • leave:当调用函数调用时,一般都有这两条指令pushl %ebpmovl %esp,%ebp,leave是这两条指令的反操作。
  • ret: 从一个函数或过程返回,之前call保存的下条指令地址会从栈内弹出到EIP寄存器中,程序转到CALL之前下条指令处执行。
call指令的两个作用:
- 将下一条指令的地址A保存在栈顶
- 设置eip指向被调用程序代码开始处

4. 函数堆栈框架

  • 执行call function

    cs:eip原来的值指向call下一条指令,该值被保存到栈顶
    cs:eip的值指向function的入口地址
  • 进入function
    pushl %ebp  //意为保存调用者的栈帧地址
    movl %esp, %ebp //初始化function的栈帧地址
    然后函数体中的常规操作
  • 退出function
    movl %ebp,%esp
    popl %ebp
    ret

二、实验

(一)mykernel实验

实验步骤

(1)进入实验楼,打开shell之后按照说明输入

(2)查看源代码

a.查看mymain.c

之前的#include...都是硬件初始化用到的语句,而截图部分是是“操作系统”开始执行的入口

从代码可见,每循环10 000次,打印一句话。

b.查看myinterrupt.c

每执行一次,都会执行一次时钟中断

(二)在mykernel基础上构造一个简单地操作系统内核

(1)mypcd.h源代码

/*
*  linux/mykernel/mypcb.h
*  Kernel internal PCB types
*  Copyright (C) 2013  Mengning
*/

#define MAX_TASK_NUM        4
#define KERNEL_STACK_SIZE   1024*8

/* CPU-specific state of this task */
struct Thread {
    unsigned long       ip;//保存eip
    unsigned long       sp;//保存esp
};

typedef struct PCB{
    int pid;
    volatile long state;    /* -1 unrunnable, 0 runnable, >0 stopped */
    char stack[KERNEL_STACK_SIZE];
    /* CPU-specific state of this task */
    struct Thread thread;
    unsigned long   task_entry;
    struct PCB *next;
}tPCB;

void my_schedule(void);//调度器
  • 本文件中定义了Thread结构体,用于存储当前进程中正在执行的线程的eip和esp。
  • PCB结构体中:
    • pid:进程号
    • state:进程状态,在模拟系统中,所有进程控制块信息都会被创建出来,其初始化值就是-1,如果被调度运行起来,其值就会变成0
    • stack:进程使用的堆栈
    • thread:当前正在执行的线程信息
    • task_entry:进程入口函数(就像一般我们用的进程定义的是main)
    • next:指向下一个PCB,模拟系统中所有的PCB是以链表的形式组织起来的。
  • 函数的声明my_schedule:调度器。它在my_interrupt.c中实现,在mymain.c中的各个进程函数会根据一个全局变量的状态来决定是否调用它,从而实现主动调度。

(2)mymain.c:内核初始化和0号进程启动

/*
 *  linux/mykernel/mymain.c
 *  Kernel internal my_start_kernel
 *  Copyright (C) 2013  Mengning
 */
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

tPCB task[MAX_TASK_NUM];
tPCB * my_current_task = NULL;
volatile int my_need_sched = 0;//用来判断是否需要调度的标识

void my_process(void);

void __init my_start_kernel(void)
{
    int pid = 0;
    int i;
    /* Initialize process 0 (初始化0号进程)*/
    task[pid].pid = pid;
    task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */
    task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;//定义0号进程的入口:myprocess
    task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1];
    task[pid].next = &task[pid];//由于0号进程初始化时只有这一个进程,所以next指向自己
    /*fork more process (创建更多其他的进程)*/
    for(i=1;i<MAX_TASK_NUM;i++)
    {
        memcpy(&task[i],&task[0],sizeof(tPCB));
        task[i].pid = i;
        task[i].state = -1;
        task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];
        task[i].next = task[i-1].next;
        task[i-1].next = &task[i];
    }
    /* start process 0 by task[0] */
    pid = 0;
    my_current_task = &task[pid];
    asm volatile(
        //%0表示参数thread.ip,%1表示参数thread.sp。
        "movl %1,%%esp\n\t"     /* set task[pid].thread.sp to esp 把参数thread.sp放到esp中*/
        "pushl %1\n\t"          /* push ebp 由于当前栈是空的,esp与ebp指向相同,所以等价于push ebp*/
        "pushl %0\n\t"          /* push task[pid].thread.ip */
        "ret\n\t"               /* pop task[pid].thread.ip to eip */
        "popl %%ebp\n\t"
        :
        : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)
        /* input c or d mean %ecx/%edx*/
    );
}
void my_process(void)
{
    int i = 0;
    while(1)
    {
        i++;
        if(i%10000000 == 0)
        {
            printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);
            if(my_need_sched == 1)
            {
                my_need_sched = 0;
                my_schedule();
            }
            printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);
        }
    }
}
  • 函数my_start_kernel是系统启动后,最先调用的函数,在这个函数里完成了0号进程的初始化和启动(状态是正在运行、入口是myprocess,进程刚启动时next指向自己)。
  • 创建了其它的多个进程,在初始化这些进程的时候可以直接利用0号进程的代码。
  • my_process函数:在模拟系统里,每个进程的函数代码都是一样的。my_process 在执行时,打印出当前进程的id,能够看到当前哪个进程正在执行。每循环10000000次检查全局标志变量my_need_sched判断是否需要调度,一旦发现其值为1,就调用my_schedule完成进程的调度。

(3)myinterrupt.c

/*
*  linux/mykernel/myinterrupt.c
*  Kernel internal my_timer_handler
*  Copyright (C) 2013  Mengning
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/ctype.h>
#include <linux/tty.h>
#include <linux/vmalloc.h>

#include "mypcb.h"

extern tPCB task[MAX_TASK_NUM];
extern tPCB * my_current_task;
extern volatile int my_need_sched;
volatile int time_count = 0;

/*
* Called by timer interrupt.
* it runs in the name of current running process,
* so it use kernel stack of current running process
*/
void my_timer_handler(void)//用于设置时间片的大小,时间片用完时设置调度标志。
{
#if 1
    if(time_count%1000 == 0 && my_need_sched != 1)
    {
        printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");
        my_need_sched = 1;
    }
    time_count ++ ;
#endif
    return;
}

void my_schedule(void)
{
    tPCB * next;
    tPCB * prev;

    if(my_current_task == NULL //task为空,即发生错误时返回
    || my_current_task->next == NULL)
    {
        return;
    }
    printk(KERN_NOTICE ">>>my_schedule<<<\n");
    /* schedule */
    next = my_current_task->next;//把当前进程的下一个进程赋给next
    prev = my_current_task;//当前进程为prev
    if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */
    {
        /* switch to next process */
        /*如果下一个进程的状态是正在执行的话,就运用if语句中的代码表示的方法来切换进程*/
        asm volatile(
            "pushl %%ebp\n\t"       /* save ebp 保存当前进程的ebp*/
            "movl %%esp,%0\n\t"     /* save esp 把当前进程的esp赋给%0(指的是thread.sp),即保存当前进程的esp*/
            "movl %2,%%esp\n\t"     /* restore  esp 把%2(指下一个进程的sp)放入esp中*/
            "movl $1f,%1\n\t"       /* save eip $1f是接下来的标号“1:”的位置,把eip保存下来*/
            "pushl %3\n\t"          /*把下一个进程eip压栈*/
            "ret\n\t"               /* restore  eip 下一个进程开始执行*/
            "1:\t"                  /* next process start here */
            "popl %%ebp\n\t"
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        );
        my_current_task = next;
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
    }
    else//用于下一个进程为未执行过的新进程时。首先将这个进程置为运行时状态,将这个进程作为当前正在执行的进程。
    {
        next->state = 0;
        my_current_task = next;
        printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);
        /* switch to new process */
        asm volatile(
            "pushl %%ebp\n\t"       /* save ebp */
            "movl %%esp,%0\n\t"     /* save esp */
            "movl %2,%%esp\n\t"     /* restore  esp */
            "movl %2,%%ebp\n\t"     /* restore  ebp */
            "movl $1f,%1\n\t"       /* save eip */
            "pushl %3\n\t"          /*把当前进程的入口保存起来*/
            "ret\n\t"               /* restore  eip */
            : "=m" (prev->thread.sp),"=m" (prev->thread.ip)
            : "m" (next->thread.sp),"m" (next->thread.ip)
        );
    }
    return;
}

三、总结:

1.操作系统“两剑”:中断上下文、进程上下文的切换.

2.操作系统的核心功能就是:进程调度和中断机制,通过与硬件的配合实现多任务处理,再加上上层应用软件的支持,最终变成可以使用户可以很容易操作的计算机系统。

3.进程切换机制中包含esp的切换、堆栈的切换。从esp可以找到进程的描述符;堆栈中ebp的切换,确定了当前变量空间属于哪个进程。

 
时间: 2024-10-24 05:06:14

第二周:一个简单的时间片轮转多道程序内核代码及分析的相关文章

对一个简单的时间片轮转多道程序内核代码的浅析

这周在网易云课堂上学习了<Linux内核分析>——操作系统是如何工作的.本周学习内容有利用 mykernel 实验模拟计算机平台和利用 mykernel 实验模拟计算机硬件平台两部分内容. 这是实验楼中 mykernel 平台运行的结果: 下面是一段一个简单的时间片轮转多道程序内核代码: 1 /* 2 * linux/mykernel/myinterrupt.c 3 * 4 * Kernel internal my_timer_handler 5 * 6 * Copyright (C) 201

Linux内核分析—完成一个简单的时间片轮转多道程序内核代码

---恢复内容开始--- 20135125陈智威 原创作品转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 ” 实验要求: mykernel实验指导(操作系统是如何工作的) 运行并分析一个精简的操作系统内核,理解操作系统是如何工作的 使用实验楼的虚拟机打开shell cd LinuxKernel/linux-3.9.4 qemu -kernel arch/x86/boot/bzImage 然后cd

完成一个简单的时间片轮转多道程序内核代码(二)

完成一个简单的时间片轮转多道程序内核代码 重要汇编代码分析 asm volatile( "movl %1,%%esp\n\t" "pushl %1\n\t" "pushl %0\n\t" "ret\n\t" "popl %%ebp\n\t" : : "c" (task[pid].thread.ip),"d" (task[pid].thread.sp) ); 保存恢复进

Linux内核分析:完成一个简单的时间片轮转多道程序内核代码

PS.贺邦   原创作品转载请注明出处  <Linux内核分析>MOOC课程    http://mooc.study.163.com/course/USTC-1000029000 1.mykernel实验指导(操作系统是如何工作的) 使用实验楼虚拟机打开shell输入下列代码 1 cd LinuxKernel/linux-3.9.4 2 qemu -kernel arch/x86/boot/bzImage 可以看到初始的内核运行情况如下: 内核不停的执行my_start_kernel(),每

基于mykernel的一个简单的时间片轮转多道程序内核代码分析

学号023作品 本实验资源来源: https://github.com/mengning/linuxkernel/ 一.观察简易操作系统 此处使用实验楼的虚拟机打开终端 cd LinuxKernel/linux-3.9.4 rm -rf mykernel patch -p1 < ../mykernel_for_linux3.9.4sc.patch make allnoconfig make #编译内核请耐心等待 qemu -kernel arch/x86/boot/bzImage 在QEMU窗口

一个简单的时间片轮转多道程序内核代码分析 (学号后三位418)

一.基于mykernel的基本Linux内核分析 1.我们按照老师在github上给出的步骤在实验楼上启动最高小内核,可以看到如下现象 在窗口中我们可以看到一个内核以及运行起来了,比较简单的内核,只时不停的输出一些字符串,>>>>>>my_time_handler here<<<<<<<和my_start_kernel here和一些计数.这时因为我们并没有加入其他的代码,再次基础上我们可以加入我们主机要实现的功能. 在myin

完成一个简单的时间片轮转多道程序内核代码

王康 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 " 分别是1 存储程序计算机工作模型,cpu执行程序的基础流程: 2 函数调用堆栈:各种寄存器和存储主要是为了指令的传取值,通过eip,esp,eax,ebp和程序内存的分区,搭配push pop call return leave等一系列指令完成函数调用操作. 3 中断:多道批程序! 在复习一下上一讲的几个重要指令

一个简单的时间片轮转多道程序内核代码 的实现

张韩 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 首先,解读一下程序的核心代码 void __init my_start_kernel(void) { int i = 0; while(1) { i++; if(i%100000 == 0) printk(KERN_NOTICE "my_start_kernel here  %d \n",i); } } 这

Linux内核设计第二周学习总结 完成一个简单的时间片轮转多道程序内核代码

陈巧然 原创作品 转载请注明出处 <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.使用实验楼的虚拟机, 观察只有一个死循环的mykernel与时钟中断的关系 步骤:cd LinuxKernel/linux-3.9.4 qemu -kernel arch/x86/boot/bzImage 执行效果如下图 Paste_Image.png 现在查看mymain.c: Paste_Image.png 再查看myin