Luogu P4782 【模板】2-SAT 问题(2-SAT)

P4782 【模板】2-SAT 问题

题意

题目背景

\(2-SAT\)问题模板

题目描述

有\(n\)个布尔变量\(x_1\sim x_n\),另有\(m\)个需要满足的条件,每个条件的形式都是“\(x_i\)为\(true/false\)或\(x_j\)为\(true/false\)”。比如“\(x_1\)为真或\(x_3\)为假”、“\(x_7\)为假或\(x_2\)为假”。\(2-SAT\)问题的目标是给每个变量赋值使得所有条件得到满足。

输入输出格式

输入格式:

第一行两个整数\(n\)和\(m\),意义如题面所述。

接下来\(m\)行每行\(4\)个整数\(i\ a\ j\ b\),表示“\(x_i\)为\(a\)或\(x_j\)为\(b\)”\((a,b\in \{ 0,1\} )\)

输出格式:

如无解,输出"IMPOSSIBLE"(不带引号); 否则输出"POSSIBLE"(不带引号),下一行\(n\)个整数\(x_1\sim x_n(x_i\in \{ 0,1\} )\),表示构造出的解。

输入输出样例

输入样例#1:

3 1
1 1 3 0

输出样例#1:

POSSIBLE
0 0 0

思路

快学\(2-SAT\),这样你就可以做[NOI2017]游戏这道水题了。 --huyufeifei

\(2-SAT\)问题是我很喜欢的一类问题,一是因为它使用了我很喜欢的\(Tarjan\)算法
,二是它使用逻辑判断的方式实现的算法,这也是很使我喜欢的。

对于每一个\(x_i\)我们建两个点,编号为\(i\)和\(i+n\),\(i\)表示\(x_i=1\)的情况,\(i+n\)表示\(x_i=0\)的情况。接下来考虑对于每一对逻辑关系建边。在这里,为了问题的普适性,我们不止考虑题目列出的条件,来试着考虑更多的情况。

  • \(a\)为真:建立一条边\((a+n,a)\),表示如果\(a\)为假,则\(a\)为真。这样就可以最终推得\(a\)为真的情况。
  • 如果\(a\)为真,则\(b\)为假:建立两条边:\((a,b+n),(b,a+n)\)。
  • \(a\)为真与\(b\)为假至少满足一个:建立两条边:\((a+n,b+n),(b,a)\)。
  • \(a\)为真与\(b\)为假不能同时满足:建立两条边:\((a,b),(b+n,a+n)\)。

还有很多的情况没有枚举,不过它们与上述内容形似,在这里就不做列举了。

接下来怎么办呢?根据我们连边的方式,不难发现边的意义为推导出,也就是说,如果\(a\)能通过某些路径到达\(b\),这表示的意义就是\(a\)能通过某些条件推导出\(b\),那么如果我们让\(a\)满足,\(b\)就一定要被满足。如果\(a,b\)能够互达,就说明这两者要么同时被满足,要么同时不被满足。

不难想出,有且仅有一种情况无解:\(a\)与\(a+n\)可以互达,也就是两个互相矛盾的条件可以互相推导出。使用\(Tarjan\)缩点,这样可以快速求出任意两点是否可以互相到达,也就可以判断出解的存在性。

如何决定各个变量的取值呢?如果能从\(a\)推导出\(a+n\),我们显然不能选择\(a\),而只能选择\(a+n\)。所以对于同一个变量的两个取值,我们要检查其是否有推导的关系。根据\(Tarjan\)算法的特性,如果\(a\)能到达\(b\)且\(a,b\)不在同一缩出的点中,那么\(b\)缩点之后所在点的编号一定小于\(a\)。如果\(a\)不能到达\(b\),那么两者的缩点编号不好判断。当然,既然只需要得出任意一组解,对于每一对\((a,a+n)\),我们就输出其缩点编号小的即可。

AC代码

#include<bits/stdc++.h>
using namespace std;
const int MAXN=2e6+5;
int n,m,tot,dfn[MAXN],low[MAXN];
int cnt,top[MAXN],to[MAXN],nex[MAXN];
int js,bel[MAXN];
bool vis[MAXN];
stack<int>S;
int read()
{
    int re=0;char ch=getchar();
    while(!isdigit(ch)) ch=getchar();
    while(isdigit(ch)) re=(re<<3)+(re<<1)+ch-'0',ch=getchar();
    return re;
}
void add_edge(int x,int y){to[++cnt]=y,nex[cnt]=top[x],top[x]=cnt;}
void tarjan(int now)
{
    dfn[now]=low[now]=++tot,vis[now]=true;
    S.push(now);
    for(int i=top[now];i;i=nex[i])
        if(!dfn[to[i]]) tarjan(to[i]),low[now]=min(low[now],low[to[i]]);
        else if(vis[to[i]]) low[now]=min(low[now],dfn[to[i]]);
    if(dfn[now]==low[now])
    {
        bel[now]=++js,vis[now]=false;
        while(S.top()!=now) bel[S.top()]=js,vis[S.top()]=false,S.pop();
        S.pop();
    }
}
int main()
{
    n=read(),m=read();
    while(m--)
    {
        int x=read(),xx=read(),y=read(),yy=read();
        if(xx&&yy) add_edge(x+n,y),add_edge(y+n,x);
        else if(xx&&!yy) add_edge(x+n,y+n),add_edge(y,x);
        else if(!xx&&yy) add_edge(x,y),add_edge(y+n,x+n);
        else if(!xx&&!yy) add_edge(x,y+n),add_edge(y,x+n);
    }
    for(int i=1;i<=(n<<1);i++) if(!dfn[i]) tarjan(i);
    for(int i=1;i<=n;i++)
        if(bel[i]==bel[i+n])
        {
            printf("IMPOSSIBLE");
            return 0;
        }
    puts("POSSIBLE");
    for(int i=1;i<=n;i++) printf("%d ",bel[i]<bel[i+n]);
    return 0;
}

原文地址:https://www.cnblogs.com/coder-Uranus/p/9893511.html

时间: 2024-10-20 10:04:22

Luogu P4782 【模板】2-SAT 问题(2-SAT)的相关文章

[luogu P3384] [模板]树链剖分

[luogu P3384] [模板]树链剖分 题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和 操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z 操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和 输入输出格式 输入格式: 第一行包含4个正整数

luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树)(主席树)

luogu P3919 [模板]可持久化数组(可持久化线段树/平衡树) 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cmath> #include<cstring> #include<iomanip> #include<algorithm> #include<ctime> #include<queue> #inc

Luogu【模板】树状数组

https://www.luogu.org/problemnew/show/P3374 单点修改, 区间查询 1 //2018年2月18日17:58:16 2 #include <iostream> 3 #include <cstdio> 4 using namespace std; 5 6 const int N = 500001; 7 int n, m; 8 int a[N], c[N]; 9 10 inline int lowbit(int x){ 11 return x &

#50: Luogu 2485 模板

$des$ 1.给定y.z.p,计算y^z mod p 的值: 2.给定y.z.p,计算满足xy ≡z(mod p)的最小非负整数x: 3.给定y.z.p,计算满足y^x ≡z(mod p)的最小非负整数x. $sol$ 模板+模板+模板 #include <bits/stdc++.h> using namespace std; #define LL long long LL n, k; LL Ksm(LL a, LL b, LL p) { LL ret = 1; while(b) { if(

[luogu P5325][模板]Min_25筛

Address Luogu #5325 Solution 记 \(p_i\) 表示第 \(i\) 小的质数(\(p[0]=1\)),\(s1[x]=\sum_{i=1}^{x}p[x],s2[x]=\sum_{i=1}^{x}p[x]^2\). 记 \(g1(x,i)\) 为:\[\sum_{j=1}^{x}[j是质数或j的最小质因子大于p_i]j\] 记 \(g2(x,i)\) 为:\[\sum_{j=1}^{x}[j是质数或j的最小质因子大于p_i]j^2\] 因为 \(n\) 以内的合数的

Luogu P3811 [模板]乘法逆元 题解报告

题目传送门 [题目大意] 给定$n$,求$1-n$在膜$p$意义下的乘法逆元. [思路分析] 好的原本我只会求单个数的逆元,然后被告知了这道题之后发现自己不会做(我果然还是太弱了),于是就学了一下递推求逆元. 设$p=k*i+r$,则可得$k*i+r\equiv0(mod\ p)$,然后乘上$i^{-1},r^{-1}$即可得到$k*r^{-1}+i^{-1}\equiv0(mod\ p)$ 由于$k=\lfloor \frac{p}{i}\rfloor,r=p\ mod\ i$,所以$i^{-

[题解] Luogu P4245 [模板]任意模数NTT

三模NTT 不会... 都0202年了,还有人写三模NTT啊... 讲一个好写点的做法吧: 首先取一个阀值\(w\),然后把多项式的每个系数写成\(aw + c(c < w)\)的形式,换句话说把多项式\(f(x)\)写成两个多项式相加的形式: \[ f(x) = wf_0(x) + f_1(x) \] 这样在这道题中取\(W = 2^{15}\)就可以避免爆long long了. 乘起来的话就是 \[ f \cdot g = (w f_0 + f_1)(wg_0 + g_1) = (f_0 g

Luogu P4171 [JSOI2010]满汉全席(2-SAT)

P4171 [JSOI2010]满汉全席 题意 题目描述 满汉全席是中国最丰盛的宴客菜肴,有许多种不同的材料透过满族或是汉族料理方式,呈现在数量繁多的菜色之中.由于菜色众多而繁杂,只有极少数博学多闻技艺高超的厨师能够做出满汉全席,而能够烹饪出经过专家认证的满汉全席,也是中国厨师最大的荣誉之一.世界满汉全席协会是由能料理满汉全席的专家厨师们所组成,而他们之间还细分为许多不同等级的厨师. 为了招收新进的厨师进入世界满汉全席协会,将于近日举办满汉全席大赛,协会派遣许多会员当作评审员,为的就是要在参赛的

luoguP3384 [模板]树链剖分

luogu P3384 [模板]树链剖分 题目 #include<iostream> #include<cstdlib> #include<cstdio> #include<cmath> #include<cstring> #include<iomanip> #include<algorithm> #include<ctime> #include<queue> #define rg register