9.4 print out the following pattern(打印图案)。
*
***
*****
*******
*****
***
*
提示: 1)本题上面的图案和下面的图案是一样的。所以在打印上面图案的时候,把图案一行一行的都记录在数组b[i]当中。
打印下面的图案时,直接就用上面那个数组反向 打印出来就可以了。马克-to-win
2)找一下规律,第一行左边有三个空格,中间有一个星号,右边有三个空格,第二行左边有两个空格,中间有三个
星号,右边有两个空格。所以一行由三部分组成,左中右。
左边,行号i与空格数目的函数关系式是:(7 - ((2 * i) - 1)) / 2,当i等于1时,前面式子等于3,当i等于2时,前面式子等于2
中间,行号i与星号数目的函 数关系式是: (2 * i - 1) ,当i等于1时,前面式子等于1,当i等于2时,前面式子等于3.
右边,行号i与空格数目的函数关系式是:(7 - ((2 * i) - 1)) / 2
(hint: for the first half, the rule is 2n-1. record their pattern( the number of
their * asterisk and the number of space, then apply to the second half.but the
sequence is reverse.)
public class Test {
public static void main(String[] args) {
int n = 7;
int m = (n + 1) / 2; /*m说明头4行应怎么画*/
String[] b = new String[n]; //记录用set up a Array to memorize the records
for (int i = 0; i < n; i++) {
b[i] = ""; //清空set every head of the element is "" in order to avoid the "NULL" appeared
}
for (int i = 1; i <= m; i++) {
for (int a = 0; a < (n - ((2 * i) - 1)) / 2; a++) {
System.out.print(" ");
b[i - 1] = b[i - 1] + " "; // add to itself
}
for (int a = 0; a < (2 * i - 1); a++) {
System.out.print("*");
b[i - 1] = b[i - 1] + "*";
} //“*”
for (int a = 0; a < (n - ((2 * i) - 1)) / 2; a++) {
System.out.print(" ");
b[i - 1] = b[i - 1] + " ";
}
System.out.print("\n");
}
/*下一段话是反向打印,下面的图案*/
for (int i = n - m; i > 0; i--) {
System.out.print(b[i - 1]);
System.out.print("\n");
}
}
}
结果:
*
***
*****
*******
*****
***
*
原文地址:https://www.cnblogs.com/mark-to-win/p/9690367.html