UPenn - Robotics 1:Aerial Robotics - week 2:Geometry and Mechanics

      

        

原文地址:https://www.cnblogs.com/ecoflex/p/9781708.html

时间: 2024-11-09 03:09:29

UPenn - Robotics 1:Aerial Robotics - week 2:Geometry and Mechanics的相关文章

[Robotics: Aerial Robotics] Quadrotor Kinematics

1transformation 2.rotations 3euler angles 4Axis/Angle Representation 5Rotations and Angular Velocities

计算机视觉算法与代码集锦

计算机视觉算法与代码集锦 计算机视觉是结合了传统摄影测量,现代计算机信息技术.人工智能等多学科的一个大学科,是一片开垦不足的大陆,路很远,但很多人都在跋涉! 本文转自CSDN(地址http://blog.csdn.net/whucv/article/details/7907391),是一篇很好的算法与代码总结文档,转载在此供大家学习参考. 原文如下: UIUC的Jia-Bin Huang同学收集了很多计算机视觉方面的代码,链接如下: https://netfiles.uiuc.edu/jbhua

机器人学 —— 飞行机器人(Introduction)

UPNN课程 aerial robotics 教授: VJ  Kummer 1.四旋翼飞行器的控制对象是各个旋翼对应的电机 2.飞行器的能源主要消耗于hovering. 3.飞行器在设计时需要考虑各个部件的重量与飞行器尺寸并对造选型表 4.飞行器惯量和质量越小,控制的ts和超调量则越小 5.飞行器的控制反馈依赖于场外摄像头或map,误差模型可用pid模型进行补偿

斯坦福CS课程列表

http://exploredegrees.stanford.edu/coursedescriptions/cs/ CS 101. Introduction to Computing Principles. 3-5 Units. Introduces the essential ideas of computing: data representation, algorithms, programming "code", computer hardware, networking, s

Review summary(二)

The high level of English is a standard for a top student. 1. Life is not successful, success is temporary; life is successful, not successful is temporary." 2. The wind blows as usual. Flowers bloom as usual. The sun rises from the east as before. B

计算机视觉与模式识别代码合集第二版two

Topic Name Reference code Image Segmentation Segmentation by Minimum Code Length AY Yang, J. Wright, S. Shankar Sastry, Y. Ma , Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2007 code Image Segmentation Normalized Cut

UPenn - Robotics 2:Computational Motion Planning - week 1:Introduction and Graph-based Plan Methods

          If you are really interested in the topic of computational motion planning in robotics, here are some related texts: Robot Motion Planning, Jean-Claude Latombe, Kluwer Academic Publishers, 1991. Principles of Robot Motion, H. Choset, K. M.

UPenn - Robotics 2:Computational Motion Planning - week 3: Probabilistic Road Maps

https://blog.csdn.net/DinnerHowe/article/details/80267062 1, initialize by random sampling PRM is not Not complete Edge case:  only probably complete, one stratety is to generate more samples between closed barriers.                           (PRM bu

UPenn - Robotics 2:Computational Motion Planning - week 4: Artificial Potential Field Methods

The basic idea here is to try to construct a smooth function over the extent of the configuration space, which has high values when the robot is near to an obstacle and lower values when it's further away. If we can construct such a function, we can