简单实现二叉搜索树 (查找树)

直接看代码

/**
 * @author <a href=mailto:[email protected]>maple</a>
 * @since 2018-11-25 11:40 PM
 */
// 二分搜索树
// 由于Key需要能够进行比较,所以需要extends Comparable<Key>
public class BST<Key extends Comparable<Key>, Value> {

    // 树中的节点为私有的类, 外界不需要了解二分搜索树节点的具体实现
    private class Node {
        private Key key;
        private Value value;
        private Node left, right;

        public Node(Key key, Value value) {
            this.key = key;
            this.value = value;
            left = right = null;
        }

        public Node(Node node) {
            this.key = node.key;
            this.value = node.value;
            this.left = node.left;
            this.right = node.right;
        }
    }

    private Node root;  // 根节点
    private int count;  // 树种的节点个数

    // 构造函数, 默认构造一棵空二分搜索树
    public BST() {
        root = null;
        count = 0;
    }

    // 返回二分搜索树的节点个数
    public int size() {
        return count;
    }

    // 返回二分搜索树是否为空
    public boolean isEmpty() {
        return count == 0;
    }

    // 向二分搜索树中插入一个新的(key, value)数据对
    public void insert(Key key, Value value) {
        root = insert(root, key, value);
    }

    // 查看二分搜索树中是否存在键key
    public boolean contain(Key key) {
        return contain(root, key);
    }

    // 在二分搜索树中搜索键key所对应的值。如果这个值不存在, 则返回null
    public Value search(Key key) {
        return search(root, key);
    }

    // 二分搜索树的前序遍历
    public void preOrder() {
        preOrder(root);
    }

    // 二分搜索树的中序遍历
    public void inOrder() {
        inOrder(root);
    }

    // 二分搜索树的后序遍历
    public void postOrder() {
        postOrder(root);
    }

    // 二分搜索树的层序遍历
    public void levelOrder() {

        // 我们使用LinkedList来作为我们的队列
        LinkedList<Node> q = new LinkedList<>();
        q.add(root);
        while (!q.isEmpty()) {

            Node node = q.remove();

            System.out.println(node.key);

            if (node.left != null)
                q.add(node.left);
            if (node.right != null)
                q.add(node.right);
        }
    }

    // 寻找二分搜索树的最小的键值
    public Key minimum() {
        assert count != 0;
        Node minNode = minimum(root);
        return minNode.key;
    }

    // 寻找二分搜索树的最大的键值
    public Key maximum() {
        assert count != 0;
        Node maxNode = maximum(root);
        return maxNode.key;
    }

    // 从二分搜索树中删除最小值所在节点
    public void removeMin() {
        if (root != null)
            root = removeMin(root);
    }

    // 从二分搜索树中删除最大值所在节点
    public void removeMax() {
        if (root != null)
            root = removeMax(root);
    }

    /**
     * O(logn)
     *
     * @param key
     */
    // 从二分搜索树中删除键值为key的节点
    public void remove(Key key) {
        root = remove(root, key);
    }

    //********************
    //* 二分搜索树的辅助函数
    //********************

    // 向以node为根的二分搜索树中, 插入节点(key, value), 使用递归算法
    // 返回插入新节点后的二分搜索树的根
    private Node insert(Node node, Key key, Value value) {

        if (node == null) {
            count++;
            return new Node(key, value);
        }

        if (key.compareTo(node.key) == 0)
            node.value = value;
        else if (key.compareTo(node.key) < 0)
            node.left = insert(node.left, key, value);
        else    // key > node->key
            node.right = insert(node.right, key, value);

        return node;
    }

    // 查看以node为根的二分搜索树中是否包含键值为key的节点, 使用递归算法
    private boolean contain(Node node, Key key) {

        if (node == null)
            return false;

        if (key.compareTo(node.key) == 0)
            return true;
        else if (key.compareTo(node.key) < 0)
            return contain(node.left, key);
        else // key > node->key
            return contain(node.right, key);
    }

    // 在以node为根的二分搜索树中查找key所对应的value, 递归算法
    // 若value不存在, 则返回NULL
    private Value search(Node node, Key key) {

        if (node == null)
            return null;

        if (key.compareTo(node.key) == 0)
            return node.value;
        else if (key.compareTo(node.key) < 0)
            return search(node.left, key);
        else // key > node->key
            return search(node.right, key);
    }

    // 对以node为根的二叉搜索树进行前序遍历, 递归算法
    private void preOrder(Node node) {

        if (node != null) {
            System.out.println(node.key);
            preOrder(node.left);
            preOrder(node.right);
        }
    }

    // 对以node为根的二叉搜索树进行中序遍历, 递归算法
    private void inOrder(Node node) {

        if (node != null) {
            inOrder(node.left);
            System.out.println(node.key);
            inOrder(node.right);
        }
    }

    // 对以node为根的二叉搜索树进行后序遍历, 递归算法
    private void postOrder(Node node) {

        if (node != null) {
            postOrder(node.left);
            postOrder(node.right);
            System.out.println(node.key);
        }
    }

    // 返回以node为根的二分搜索树的最小键值所在的节点
    private Node minimum(Node node) {
        if (node.left == null)
            return node;

        return minimum(node.left);
    }

    // 返回以node为根的二分搜索树的最大键值所在的节点
    private Node maximum(Node node) {
        if (node.right == null)
            return node;

        return maximum(node.right);
    }

    // 删除掉以node为根的二分搜索树中的最小节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMin(Node node) {

        if (node.left == null) {

            Node rightNode = node.right;
            node.right = null;
            count--;
            return rightNode;
        }

        node.left = removeMin(node.left);
        return node;
    }

    // 删除掉以node为根的二分搜索树中的最大节点
    // 返回删除节点后新的二分搜索树的根
    private Node removeMax(Node node) {

        if (node.right == null) {

            Node leftNode = node.left;
            node.left = null;
            count--;
            return leftNode;
        }

        node.right = removeMax(node.right);
        return node;
    }

    // 删除掉以node为根的二分搜索树中键值为key的节点, 递归算法
    // 返回删除节点后新的二分搜索树的根
    Node remove(Node node, Key key) {

        if (node == null)
            return null;

        if (key.compareTo(node.key) < 0) {
            node.left = remove(node.left, key);
            return node;
        } else if (key.compareTo(node.key) > 0) {
            node.right = remove(node.right, key);
            return node;
        } else {   // key == node->key

            // 待删除节点左子树为空的情况
            if (node.left == null) {
                Node rightNode = node.right;
                node.right = null;
                count--;
                return rightNode;
            }

            // 待删除节点右子树为空的情况
            if (node.right == null) {
                Node leftNode = node.left;
                node.left = null;
                count--;
                return leftNode;
            }

            // 待删除节点左右子树均不为空的情况

            // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
            // 用这个节点顶替待删除节点的位置
            Node successor = new Node(minimum(node.right));
            count++;

            successor.right = removeMin(node.right);
            successor.left = node.left;

            node.left = node.right = null;
            count--;

            return successor;
        }
    }

    // 测试二分搜索树
    public static void main(String[] args) {

        int N = 1000000;

        // 创建一个数组,包含[0...N)的所有元素
        Integer[] arr = new Integer[N];
        for (int i = 0; i < N; i++)
            arr[i] = new Integer(i);

        // 打乱数组顺序
        for (int i = 0; i < N; i++) {
            int pos = (int) (Math.random() * (i + 1));
            Integer t = arr[pos];
            arr[pos] = arr[i];
            arr[i] = t;
        }
        // 由于我们实现的二分搜索树不是平衡二叉树,
        // 所以如果按照顺序插入一组数据,我们的二分搜索树会退化成为一个链表
        // 平衡二叉树的实现,我们在这个课程中没有涉及,
        // 有兴趣的同学可以查看资料自学诸如红黑树的实现
        // 以后有机会,我会在别的课程里向大家介绍平衡二叉树的实现的:)

        // 我们测试用的的二分搜索树的键类型为Integer,值类型为String
        // 键值的对应关系为每个整型对应代表这个整型的字符串
        BST<Integer, String> bst = new BST<Integer, String>();
        for (int i = 0; i < N; i++)
            bst.insert(new Integer(arr[i]), Integer.toString(arr[i]));

        // 对[0...2*N)的所有整型测试在二分搜索树中查找
        // 若i在[0...N)之间,则能查找到整型所对应的字符串
        // 若i在[N...2*N)之间,则结果为null
        for (int i = 0; i < 2 * N; i++) {
            String res = bst.search(new Integer(i));
            if (i < N)
                assert res.equals(Integer.toString(i));
            else
                assert res == null;
        }
    }
}

原文地址:https://www.cnblogs.com/leihuazhe/p/10018241.html

时间: 2024-10-11 14:51:23

简单实现二叉搜索树 (查找树)的相关文章

平衡二叉搜索树(AVL树,红黑树)数据结构和区别

平衡二叉搜索树(Balanced Binary Search Tree) 经典常见的自平衡的二叉搜索树(Self-balancing Binary Search Tree)有 ① AVL树 :Windows NT 内核中广泛使用 ② 红黑树:C++ STL(比如 map.set )Java 的 TreeMap.TreeSet.HashMap.HashSet  Linux 的进程调度  Ngix 的 timer 管理 1 AVL树  vs  红黑树 ①AVL树 平衡标准比较严格:每个左右子树的高度

树&#183;二叉查找树ADT(二叉搜索树/排序树)

1.定义 对于每个节点X,它的左子树中所有的项的值小于X的值,右子树所有项的值大于X的值. 如图:任意一个节点,都满足定义,其左子树的所有值小于它,右子树的所有值大于它. 2.平均深度 在大O模型中,二叉查找树的平均深度是O(logN) . 证明:查找某个节点x的算法深度,即从根出发找到节点x的路径长.所有查找的平均深度,就是平均内部路径长. 假设二叉查找树共N个节点,假设左子树有i个节点,则右子树节点数目:N-i-1. 假设D(N)表示具有N个基点的内部路径长.则N个节点的树的内部路径长:D(

漫谈二叉搜索树的基本算法(三种思路实现查询操作)

  前面我们说了二叉树前序中序后序遍历的递归非递归算法的实现,下面我们再来说说二叉搜索树~   二叉排序树分为静态查找(find)和动态查找(insert.delete) 二叉搜索树:一棵二叉树,可以为空:如果不为空,满足下列性质: 1.非空左子树的所有键值小于其根结点的键值. 2.非空右子树的所有键值大于其根结点的键值 3.左右子树都是二叉搜索树!! 2.以上是二叉搜索树(也叫二叉排序树)的一些基本操作,此处我们先说一下二叉树的结点定义·· 代码中判断当前结点位置情况的辅助方法以及简单的 ge

二叉搜索树(BST)

如图所示为一颗二叉搜索树,二叉搜索树是具有下列性质的二叉树或空树: 1. 若任意节点的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 2. 若任意节点的右子树不空,则右子树上所有结点的值均大于它的根结点的值: 3. 任意节点的左.右子树也分别为二叉查找树. 4. 没有键值相等的节点. 补充:二叉搜索树的中序遍历是有序的. 二叉搜索树结构 struct BSTnode{ BSTnode *l,*r;//分别指向左右节点 int val;//节点代表的值 BSTnode(int v){//

【总结】二叉搜索树

简单介绍 二叉搜索树又叫二叉查找树. 是一种数据结构,支持多种动态集合操作,包括查找,返回最小值,返回最大值,返回前驱和后继节点,插入和删除 它既可以用作字典,也可以用做优先队列. 如果一颗二叉树满足这样的特性: 设 x为二叉查找树中的一个节点. 1.如果 y是x 的左子树的一个节点,则 key[y] <= key[x]. 2.如果 y是x 的右子树的一个节点,则 key[x] <= key[y]. 那么则称它为二叉查找树 二叉查找树是学习平衡树的基础 基本操作 1.查询 如果在数组中我们想寻

二叉搜索树基本操作实现

二叉搜索树又称为二叉排序树,首先二叉搜索树是一棵二叉树,所谓二叉树,就是"任意节点最多允许两个子节点",这两个子节点称为左右子节点. 二叉搜索树的性质: 1.若左子树不空,则左子树上的所有节点的值均小于其根节点的值: 2.若右子树不空,则右子树上的所有节点的值均大于其根节点的值: 上图便是一个二叉搜索树,也就是说:任意节点的键值一定大于其左子树中的每一个节点的键值,并小于其右子树中的每一个节点的键值. 下面是自己对二叉搜索树的代码实现: #include <iostream>

hdu 3791 二叉搜索树

简单的二叉搜索树建树过程 #include<stdio.h> #include<string.h> int tree1[1500], tree2[1500]; char s[1000], k[1000]; void build1() { int i; tree1[1] = s[0] - '0'; int y = strlen(s); for (i = 1; i < y; i++) { int now = 1; while (1) { if (tree1[now] == -1)

二叉搜索树的深度与搜索效率图解

二叉搜索树的深度与搜索效率 我们在树, 二叉树, 二叉搜索树中提到,一个有n个节点的二叉树,它的最小深度为log(n),最大深度为n.比如下面两个二叉树: 深度为n的二叉树 深度为log(n)的二叉树 这两个二叉树同时也是二叉搜索树(参考树, 二叉树, 二叉搜索树).注意,log以2为基底.log(n)是指深度的量级.根据我们对深度的定义,精确的最小深度为floor(log(n)+1). 我们将处于同一深度的节点归为一层.如果除最后一层外的其他层都被节点填满时,二叉树有最小深度log(n). 二

【数据结构】第9章 查找! (二叉搜索树BST AVL树 B-(+)树 字典树 HASH表)

难产的笔记...本来打算用1天 结果前前后后拖了5天 §9.1 静态查找表 9.1.1 顺序表的查找 各种扫 自己脑补吧 复杂度O(n) 9.1.2 有序表的查找 若表是单调的,则可以利用二分查找.复杂度O(logn) 9.1.3 静态树表的查找 见 http://blog.csdn.net/area_52/article/details/43795837 9.1.4 索引顺序表的查找 建立索引表查找 §9.2 动态查找表 动态查找表的特点是,表结构本身是在查找过程中动态生成的,即对于给定值ke