网络算法图形显示器

https://www.desmos.com/calculator/2rnqgoa6a4

比较喜欢,这个可以用来针对贝塞尔曲线的动画效果进行调整

时间: 2024-12-13 22:32:09

网络算法图形显示器的相关文章

网络流最经典的入门题 各种网络算法都能AC。

Drainage Ditches 题目抽象:给你m条边u,v,c.   n个定点,源点1,汇点n.求最大流.  最好的入门题,各种算法都可以拿来练习 (1):  一般增广路算法  ford() 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 #include <cmath> 5 #include <algorithm> 6 #include <string&g

机器学习——DBN深度信念网络详解(转)

深度神经网路已经在语音识别,图像识别等领域取得前所未有的成功.本人在多年之前也曾接触过神经网络.本系列文章主要记录自己对深度神经网络的一些学习心得. 简要描述深度神经网络模型. 1.  自联想神经网络与深度网络 自联想神经网络是很古老的神经网络模型,简单的说,它就是三层BP网络,只不过它的输出等于输入.很多时候我们并不要求输出精确的等于输入,而是允许一定的误差存在.所以,我们说,输出是对输入的一种重构.其网络结构可以很简单的表示如下: 如果我们在上述网络中不使用sigmoid函数,而使用线性函数

基于BP神经网络的简单字符识别算法自小结(C语言版)

本文均属自己阅读源码的点滴总结,转账请注明出处谢谢. 欢迎和大家交流.qq:1037701636 email:[email protected] 写在前面的闲话: 自我感觉自己应该不是一个很擅长学习算法的人,过去的一个月时间里因为需要去接触了BP神经网络.在此之前一直都认为算法界的神经网络.蚁群算法.鲁棒控制什么的都是特别高大上的东西,自己也就听听好了,未曾去触碰与了解过.这次和BP神经网络的邂逅,让我初步掌握到,理解透彻算法的基本原理与公式,转为计算机所能识别的代码流,这应该就是所谓的数学和计

数据挖掘|朴素贝叶斯算法

作者:张一 链接:https://zhuanlan.zhihu.com/p/21571692 来源:知乎 著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 因为后期的项目将涉及到各种各样的价格数据处理问题,所以我们现在开始学习一些简单的数据清洗与算法的知识.关于算法,以前听起来觉得好高大上,现在开始学,觉得书上的描述并不是很通俗易懂,所以用自己的语言来简要写一下这些算法~ 注:非商业转载注明作者即可,商业转载请联系作者授权并支付稿费.本人已授权"维权骑士"网站(ht

BP网络的代码分析

去年在学习Stanford的ML课程的时候整理过一篇BP神经网络原理的解析,链接地址,不过没有对它的code实现作太多的解读,只是用MATLAB的工具箱做了实验. Jeremy Lin 具体的原理性资料可以参考: [1] BP神经网络解析 http://blog.csdn.net/linj_m/article/details/9897839 [2] Tom M.Mitchell 机器学习教程  地址 BP网络算法流程: 从上面的算法流程可以看出来,BP神经网络的步骤并不多,如果你之前就了解BP神

初识贝叶斯网络

前言 一看到贝叶斯网络,马上让人联想到的是5个字,朴素贝叶斯,在所难免,NaiveByes的知名度确实会被贝叶斯网络算法更高一点.其实不管是朴素贝叶斯算法,还是今天我打算讲述的贝叶斯网络算法也罢,归根结底来说都是贝叶斯系列分类算法,他的核心思想就是基于概率学的知识进行分类判断,至于分类得到底准不准,大家尽可以自己用数据集去测试测试.OK,下面进入正题--贝叶斯网络算法. 朴素贝叶斯 一般我在介绍某种算法之前,都事先会学习一下相关的算法,以便于新算法的学习,而与贝叶斯网络算法相关性比较大的在我看来

BP神经网络的数学原理及其算法实现

标签: 分类器神经网络 出处http://blog.csdn.net/zhongkejingwang/article/details/44514073 上一篇文章介绍了KNN分类器,当时说了其分类效果不是很出色但是比较稳定,本文后面将利用BP网络同样对Iris数据进行分类. 什么是BP网络 BP神经网络,BP即Back Propagation的缩写,也就是反向传播的意思,顾名思义,将什么反向传播?文中将会解答.不仅如此,关于隐层的含义文中也会给出个人的理解.最后会用Java实现的BP分类器作为其

深度学习算法实践15---堆叠去噪自动编码机(SdA)原理及实现

我们讨论了去噪自动编码机(dA),并讨论了Theano框架实现的细节.在本节中,我们将讨论去噪自动编码机(dA)的主要应用,即组成堆叠自动编码机(SdA),我们将以MNIST手写字母识别为例,用堆叠自动编码机(SdA)来解决这一问题. 堆叠自动编码机(SdA)是由一系列去噪自动编码机堆叠而成,每个去噪自动编码机的中间层(即编码层)作为下一层的输入层,这样一层一层堆叠起来,构成一个深层网络,这些网络组成堆叠去噪自动编码机(SdA)的表示部分.这部分通过无监督学习,逐层进行培训,每一层均可以还原加入

电子书 算法导论.pdf

有关算法的书中,有一些叙述非常严谨,但不够全面:另一些涉及了大量的题材,但又缺乏严谨性.<算法导论(原书第3版)/计算机科学丛书>将严谨性和全面性融为一体,深入讨论各类算法,并着力使这些算法的设计和分析能为各个层次的读者接受.全书各章自成体系,可以作为独立的学习单元:算法以英语和伪代码的形式描述,具备初步程序设计经验的人就能看懂:说明和解释力求浅显易懂,不失深度和数学严谨性. <算法导论(原书第3版)/计算机科学丛书>全书选材经典.内容丰富.结构合理.逻辑清晰,对本科生的数据结构课