数据结构0103汉诺塔&八皇后

主要是从汉诺塔及八皇后问题体会递归算法。

汉诺塔:

#include <stdio.h>

void move(int n, char x,char y, char z)
{
if(1==n)
{
printf("%c-->%c\n",x,z);
}
else
{
move(n-1,x,z,y); //将n-1个盘子从x借助z移到y上
printf("%c-->%c\n",x,z); //将第n个盘子从x移到z上
move(n-1,y,x,z); //将n-1个盘子从y借助x移到z上
}
}

int main()
{
int n;

printf("请输入汉诺塔的层数:\n");
scanf("%d",&n);
printf("移动的步骤如下:\n");
move(n,‘X‘,‘Y‘,‘Z‘);

return 0;
}

八皇后:

在8*8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行,同一列,问有多少种摆法(92种,穷举法):

代码如下:

#include <stdio.h>
#include <stdlib.h>

int count=0;

int notDanger(int row,int j,int(*chess)[8])
{
int i,k,flag1=0,flag2=0,flag3=0,flag4=0,flag5=0;
//判断列方向
for(i=0;i<8;i++)
{
if(*(*(chess+i)+j)!=0)
{
flag1=1;
break;
}
}
//判断左上方
for(i=row,k=j;i>=0 && k>=0;i--,k--)
{
if(*(*(chess+i)+k)!=0)
{
flag2=1;
break;
}
}
//判断右下方
for(i=row,k=j;i<8 && k<8;i++,k++)
{
if(*(*(chess+i)+k)!=0)
{
flag3=1;
break;
}
}
//判断右上方
for(i=row,k=j;i>=0 && k<8;i--,k++)
{
if(*(*(chess+i)+k)!=0)
{
flag4=1;
break;
}
}
//判断左下方
for(i=row,k=j;i<8 && k>=0;i++,k--)
{
if(*(*(chess+i)+k)!=0)
{
flag5=1;
break;
}
}
if(flag1 || flag2 || flag3 || flag4 || flag5)
{
return 0;
}
else
{
return 1;
}
}

void EightQueen(int row, int n, int(*chess)[8]) //三个参数表示行,列,及指向期盼每一行的指针
{
int i,j,chess2[8][8];

for( i=0;i<8;i++)
{
for( j=0;j<8;j++)
{
chess2[i][j]=chess[i][j];
}
}

if(8==row)
{
printf("第%d种\n",count+1);
for(i=0;i<8;i++)
{
for(j=0;j<8;j++)
{
printf("%d ",*(*(chess2+i)+j));
}
printf("\n");
}
printf("\n");
count++;
}
else
{
for(j=0;j<n;j++)
{
if(notDanger(row,j,chess))//判断这个位置是否有两个皇后冲突
{
for(i=0;i<8;i++)
{
*(*(chess2+row)+i)=0;
}
*(*(chess2+row)+j)=1;
EightQueen(row+1,n,chess2);
}
}
}
}

int main()
{
int chess[8][8],i,j;

for(i=0;i<8;i++) //0表示没有数据,1表示存放皇后
{
for(j=0;j<8;j++)
{
chess[i][j]=0;
}
}

EightQueen(0 ,8 ,chess);

printf("总共有%d种解决方法!\n\n",count);

return 0;
}

时间: 2024-10-26 02:57:46

数据结构0103汉诺塔&八皇后的相关文章

数据结构之汉诺塔问题

汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘.  ——摘自百度百科 汉诺塔之三个盘子,需要几步 汉诺塔之四个盘子,需要几步? 汉诺塔之二十个盘子,需要几步? 原文地址:https://www.cnblogs.com/l-x-x-y-d-j/p/1137

【算法与数据结构】汉诺塔问题Java实现

思路:递归 [代码] 1 public class Main { 2 public static void hanoi(int n, int x, int y, int z) { 3 if (n == 1) { 4 System.out.print(x + "----->" + z); 5 }else { 6 hanoi(n - 1, x, z, y);//把前面n-1个移动到y上 7 System.out.print(x + "----->" + y)

韩顺平_PHP程序员玩转算法公开课(第一季)01_算法重要性_五子棋算法_汉诺塔_回溯算法_学习笔记_源代码图解_PPT文档整理

文西马龙:http://blog.csdn.net/wenximalong/ 课程说明:算法是程序的灵魂,为什么有些网站能够在高并发,和海量吞吐情况下依然坚如磐石,大家可能会说: 网站使用了服务器集群技术.数据库读写分离和缓存技术(比如memcahced和redis等),那如果我再深入的问一句,这些优化技术又是怎样被那些天才的技术高手设计出来的呢? 我在上大学的时候就在想,究竟是什么让不同的人写出的代码从功能看是一样的,但从运行效率上却有天壤之别, 就拿以前在软件公司工作的实际经历来说吧, 我是

简述java递归与非递归算法,0-100求和,斐波那契数列,八皇后,汉诺塔问题

一:什么是递归算法? 递归算法就是直接或者间接的调用自己的方法,在达到一个条件的时候停止调用(递归出口),所以一定要找准好条件,让递归停止,否则就会是无限进行下去 二:递归程序设计的关键 1:找出调用中所需要的参数 2:返回的结果 3:递归调用结束的条件 三:递归程序注意 1:要有方法中自己调用自己 2:要有分支结构 3:要有结束的条件 四:简单叙述递归函数的优缺点 优点: 1:简洁清晰,实现容易,可读性好 2:在遍历的算法中,递归比循环更为简单 缺点: 1:效率低,使用递归函数是有空间和时间的

16、蛤蟆的数据结构笔记之十六栈的应用之栈与递归之汉诺塔问题

16.蛤蟆的数据结构笔记之十六栈的应用之栈与递归之汉诺塔问题 本篇名言:"人生的价值,并不是用时间,而是用深度去衡量的." 继续栈与递归应用,汉诺塔问题. 欢迎转载,转载请标明出处: 1.  汉诺塔问题 汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上.并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一

数据结构与算法—递归(阶乘、斐波那契、汉诺塔)

目录 递归介绍 递归求阶乘 递归求斐波那契 递归解决汉诺塔 总结 递归介绍 递归:就是函数自己调用自己. 子问题须与原始问题为同样的事,或者更为简单:递归通常可以简单的处理子问题,但是不一定是最好的.对于递归要分清以下概念: 自己调用自己 递归通常不在意具体操作,只关心初始条件和上下层的变化关系. 递归函数需要有临界停止点,即递归不能无限制的执行下去.通常这个点为必须经过的一个数. 递归通常能被其他方案替代(栈.数组正向求). 认识递归,递归函数通常简易但是对于初学者可能很难取理解它.拿一个递归

【数据结构】2、汉诺塔

/* *功能:假设有3个塔座x y z,在x上插有n个直径大小各不相同.从小到大编号为1 - n的圆盘,要求将x轴上的n个圆盘移动到z轴并按同样顺序排列,移动圆盘须遵循以下规则: 1).每次只能移动一个圆盘: 2).圆盘可插在x y z中的任一塔座上: 3).任何时刻不能将一个较大的圆盘压在较小的圆盘上: *文件:hanoi.cpp *时间:2015年7月6日20:22:29 *作者:cutter_point */ #include <iostream> using namespace std

数据结构---汉诺塔

/*汉诺塔:A座有n个盘子,下面直径比上面大,要借助C座,将n个盘子移到B上,移动过程中大盘子一定在小盘子下面*/ package pack; public class Main { static int n = 10; public static void main(String[] args) { han(n,'A','B','C'); //将n个盘子借助C,从A到B } public static void han(int n,char a,char b,char c) { if(n==1

【数据结构与算法】汉诺塔算法——java递归实现

汉诺塔的递归实现算法,将A中的圆盘借助B圆盘完全移动到C圆盘上, 每次只能移动一个圆盘,并且每次移动时大盘不能放在小盘上面 递归函数的伪算法为如下: if(n == 1)    直接将A柱子上的圆盘从A移动到C else    先将A柱子上的n-1个圆盘借助C柱子移动到B柱子上    直接将A柱子上的第n个圆盘移动到C柱子上    最后将B柱子上的n-1个圆盘借助A柱子移动到C柱子上 该递归算法的时间复杂度为O(2的n次方),当有n个圆盘时,需要移动圆盘2的n次方-1次 public class