何为回归? “回归”一词是由达尔文的表兄弟Francis Galton发明的.Galton于1877年完成了第一次回归预测,目的是根据上一代豌豆种子(双亲)的尺寸来预测下一代豌豆种子(孩子)的尺寸. Galton在大量对象上应用了回归分析,甚至包括人的身高预测.他注意到,如果双亲的高高度比平均高度高,他们的子女也倾向于比平均高度高,但尚不及双亲(笔者感觉未必,Galton并未考虑物质条件的发展会带来整体身高的增加,至少笔者感觉80,90的人普遍比父母高).孩子的高度向着平均高度“回归”. 在软件
线性回归 优点:结果易于理解,计算上不复杂 缺点:对非线性的数据拟合不好 适用数据类型:数值型和标称型数据 回归的目的就预测数值型的目标值.最直接的办法就是依据输入写一个目标值的计算公式.这个计算公式就是所谓的回归方程(regression equation),其中的参数就是回归系数,求这些回归系数的过程就是回归. 说道回归,一般都是指线性回归(linear regression). 一元线性回归的矩阵形式可以写成,其中 是噪声,b是回归系数(斜率) 或者 ,其中y.X.a.都是n维向量,而b是
1.简单的线性回归 假定输入数据存放在矩阵X中,而回归系数存放在向量W中,则对于给定的数据X1,预测结果将会是 这里的向量都默认为列向量 现在的问题是手里有一些x和对应的y数据,怎样才能找到W呢?一个常用的方法是找到使误差最小的W,这里的误差是指预测y值与真实y值之间的差值,使用该误差的简单累加将使得正差值和负差值相互抵消,所以我们采用平方误差. 平方误差可以写做: 用矩阵表示可以写成 使用上式对w进行求导: 具体可参考https://blog.csdn.net/nomadlx53/articl
1. Shrinkage(缩减) Methods 当特征比样本点还多时(n>m),输入的数据矩阵X不是满秩矩阵,在求解(XTX)-1时会出现错误.接下来主要介绍岭回归(ridge regression)和前向逐步回归(Foward Stagewise Regression)两种方法. 1.1 岭回归(ridge regression) 简单来说,岭回归就是在矩阵XTX上加上一个从而使得矩阵非奇异,进而能进行求逆.其中矩阵I是一个单位矩阵,是一个调节参数. 岭回归的回归系数计算公式为: 岭回归最先
===================================================================== <机器学习实战>系列博客是博主阅读<机器学习实战>这本书的笔记也包含一些其他python实现的机器学习算法 算法实现均采用python github 源码同步:https://github.com/Thinkgamer/Machine-Learning-With-Python ==================================
在监督学习(supervised learning)的过程中,只需要给定输入样本集,机器就可以从中推演出指定目标变量的可能结果.监督学习相对比较简单,机器只需从输入数据中预测合适的模型,并从中计算出目标变量的结果. 监督学习一般使用两种类型的目标变量:标称型和数值型 标称型:标称型目标变量的结果只在有限目标集中取值,如真与假(标称型目标变量主要用于分类) 数值型:数值型目标变量则可以从无限的数值集合中取值,如0.100,42.001等 (数值型目标变量主要用于回归分析)-------------
一.数值转化为字符串函数Str.CStr Str函数将数值转换为字符串,即返回一个代表一个数值的字符串,其语法为: Str(number) CStr函数将数值表达式转换为字符串,其语法为: CStr(mynumberExpression) 注意:当一个数值转换成字符串时,总会在其前面保留一个空位来表示正负,即字符串的第一位一定是空格或正负号,Str将英文句号(.)作为有效的小数点. 演示代码: Sub StrTranfomationDemo() Dim myDouble
提到关联规则算法,一般会想到Apriori或者FP,一般很少有想到HotSpot的,这个算法不知道是应用少还是我查资料的手段太low了,在网上只找到很少的内容,这篇http://wiki.pentaho.com/display/DATAMINING/HotSpot+Segmentation-Profiling ,大概分析了一点,其他好像就没怎么看到了.比较好用的算法类软件,如weka,其里面已经包含了这个算法,在Associate--> HotSpot里面即可看到,运行算法界面一般如下: 其中,
数据回归分类预测的基本算法及python实现 关于数据的回归和分类以及分析预测.讨论分析几种比较基础的算法,也可以算作是比较简单的机器学习算法. 一. KNN算法 邻近算法,可以用来做回归分析也可以用来做分类分析.主要思想是采取K个最为邻近的自变量来求取其应变量的平均值,从而做一个回归或者是分类.一般来说,K取值越大,output的var会更小,但bias相应会变大.反之,则可能会造成过拟合.因此,合理的选取K的值是KNN算法当中一个很重要的步骤. Advantages First