黑马程序员——java基础——多线程
------Java培训、Android培训、iOS培训、.Net培训、期待与您交流! -------
进程:是一个正在执行中的程序。每一个进程执行都有一个执行顺序。该顺序是一个执行路径,或者叫一个控制单元。
线程:就是进程中的一个独立的控制单元。线程在控制着进程的执行。一个进程中至少有一个线程。
一个进程至少有一个线程在运行,当一个进程中出现多个线程时,就称这个应用程序是多线程应用程序,每个线程在栈区中都有自己的执行空间,自己的方法区、自己的变量。
jvm在启动的时,首先有一个主线程,负责程序的执行,调用的是main函数。主线程执行的代码都在main方法中。
当产生垃圾时,收垃圾的动作,是不需要主线程来完成,因为这样,会出现主线程中的代码执行会停止,会去运行垃圾回收器代码,效率较低,所以由单独一个线程来负责垃圾回收。
扩展:其实更细节说明jvm,jvm启动不止一个线程,还有负责垃圾回收机制的线程。
随机性的原理:因为cpu的快速切换造成,哪个线程获取到了cpu的执行权,哪个线程就执行。
返回当前线程的名称:Thread.currentThread().getName()
线程的名称是由:Thread-编号定义的。编号从0开始。
线程要运行的代码都统一存放在了run方法中。
线程要运行必须要通过类中指定的方法开启。start方法。(启动后,就多了一条执行路径)
start方法:1)、启动了线程;2)、让jvm调用了run方法。
创建线程的方式
创建线程共有两种方式:继承方式和实现方式
创建线程的第一种方式:继承Thread,由子类复写run方法。
步骤:
1,定义类继承Thread类;
2,目的是复写run方法,将要让线程运行的代码都存储到run方法中;
3,通过创建Thread类的子类对象,创建线程对象;
4,调用线程的start方法,开启线程,并执行run方法。
class MyThread extends Thread{ public MyThread() { super(); // TODO Auto-generated constructor stub } public MyThread(String name) { super(name); // TODO Auto-generated constructor stub } public void run() { for(int i =0 ;i<10;i++){ System.out.println("Demo:"+Thread.currentThread().getName()+":"+i); } } } public class ThreadDemo { public static void main(String[] args) { // TODO Auto-generated method stub MyThread demo1 = new MyThread("线程一"); demo1.start(); MyThread demo2 = new MyThread("线程二"); demo2.start(); for(int i = 0;i<10;i++){ System.out.println("main:"+i); } } }
创建线程的第二种方式:实现一个接口Runnable
步骤:
1,定义类实现Runnable接口。
2,覆盖接口中的run方法(用于封装线程要运行的代码)。
3,通过Thread类创建线程对象;
4,将实现了Runnable接口的子类对象作为实际参数传递给Thread类中的构造函数。
为什么要传递呢?因为要让线程对象明确要运行的run方法所属的对象。
5,调用Thread对象的start方法。开启线程,并运行Runnable接口子类中的run方法。
class Ticket implements Runnable{ private int tick = 100; public void run() { while(true) { if(tick>0) { System.out.println(Thread.currentThread().getName()+"....sale : "+ tick--); } } } } class TicketDemo { public static void main(String[] args) { Ticket t = new Ticket(); Thread t1 = new Thread(t);//创建了一个线程; Thread t2 = new Thread(t);//创建了一个线程; t1.start(); t2.start(); } }
为什么要有Runnable接口的出现?
1:通过继承Thread类的方式,可以完成多线程的建立。但是这种方式有一个局限性,如果一个类已经有了自己的父类,就不可以继承Thread类,因为java单继承的局限性。
可是该类中的还有部分代码需要被多个线程同时执行。这时怎么办呢?
只有对该类进行额外的功能扩展,java就提供了一个接口Runnable。这个接口中定义了run方法,其实run方法的定义就是为了存储多线程要运行的代码。
所以,通常创建线程都用第二种方式。
因为实现Runnable接口可以避免单继承的局限性
2:其实是将不同类中需要被多线程执行的代码进行抽取。将多线程要运行的代码的位置单独定义到接口中。为其他类进行功能扩展提供了前提。
所以Thread类在描述线程时,内部定义的run方法,也来自于Runnable接口
实现Runnable接口可以避免单继承的局限性。而且,继承Thread,是可以对Thread类中的方法,进行子类复写的。但是不需要做这个复写动作的话,只为定义线程代码存放位置,实现Runnable接口更方便一些。所以Runnable接口将线程要执行的任务封装成了对象。
线程状态:
被创建:start()
运行:具备执行资格,同时具备执行权;
冻结:sleep(time),wait()—notify()唤醒;线程释放了执行权,同时释放执行资格;
临时阻塞状态:线程具备cpu的执行资格,没有cpu的执行权;
消亡:stop()
线程安全问题
多线程安全问题的原因:
通过图解:发现一个线程在执行多条语句时,并运算同一个数据时,在执行过程中,其他线程参与进来,并操作了这个数据。导致到了错误数据的产生。
涉及到两个因素:
1,多个线程在操作共享数据。
2,有多条语句对共享数据进行运算。
原因:这多条语句,在某一个时刻被一个线程执行时,还没有执行完,就被其他线程执行了。
解决安全问题的原理:
只要将操作共享数据的语句在某一时段让一个线程执行完,在执行过程中,其他线程不能进来执行就可以解决这个问题。
在java中对于多线程的安全问题提供了专业的解决方式——synchronized(同步)
这里也有两种解决方式,一种是同步代码块,还有就是同步函数。都是利用关键字synchronized来实现。
a、同步代码块
用法:
synchronized(对象)
{需要被同步的代码}
同步可以解决安全问题的根本原因就在那个对象上。其中对象如同锁。持有锁的线程可以在同步中执行。没有持有锁的线程即使获取cpu的执行权,也进不去,因为没有获取锁。
<span style="font-size:14px;">class Ticket implements Runnable { private int tick = 1000; Object obj = new Object(); public void run() { while(true) { synchronized(obj) { if(tick>0) { //try{Thread.sleep(10);}catch(Exception e){} System.out.println(Thread.currentThread().getName()+"....sale : "+ tick--); } } } } } class TicketDemo2 { public static void main(String[] args) { Ticket t = new Ticket(); Thread t1 = new Thread(t); Thread t2 = new Thread(t); t1.start(); t2.start(); } } </span>
b,同步函数
其实就是将同步关键字定义在函数上,让函数具备了同步性。
同步函数是用的哪个锁呢?
通过验证,函数都有自己所属的对象this,所以同步函数所使用的锁就是this锁。
<span style="font-size:14px;">class Ticket implements Runnable { private int tick = 100; Object obj = new Object(); boolean flag = true; public void run() { if(flag) { while(true) { show(); } } } public synchronized void show()//this { if(tick>0) { try{Thread.sleep(10);}catch(Exception e){} System.out.println(Thread.currentThread().getName()+"....show.... : "+ tick--); } } } class ThisLockDemo { public static void main(String[] args) { Ticket t = new Ticket(); Thread t1 = new Thread(t); t1.start(); } </span>
当同步函数被static修饰时,这时的同步用的是哪个锁呢
静态函数在加载时所属于类,这时有可能还没有该类产生的对象,但是该类的字节码文件加载进内存就已经被封装成了对象,这个对象就是该类的字节码文件对象。
所以静态加载时,只有一个对象存在,那么静态同步函数就使用的这个对象。
这个对象就是类名.class
class Single { private static Single s = null; private Single(){} public static Single getInstance() { if(s==null) { synchronized(Single.class) { if(s==null) //--->A; s = new Single(); } } return s; } } class SingleDemo { public static void main(String[] args) { System.out.println("Hello World!"); } }
同步代码块和同步函数的区别
同步代码块使用的锁可以是任意对象。
同步函数使用的锁是this,静态同步函数的锁是该类的字节码文件对象。
线程同步的利弊
好处:解决了线程安全问题。
弊端:相对降低性能,因为判断锁需要消耗资源,产生了死锁。
定义同步是有前提的:
1,必须要有两个或者两个以上的线程,才需要同步。
2,多个线程必须保证使用的是同一个锁。
同步死锁
通常只要将同步进行嵌套,就可以看到现象。同步函数中有同步代码块,同步代码块中还有同步函数。
public class DeadLockDemo { public static void main(String[] args) { // TODO Auto-generated method stub // TODO Auto-generated method stub Ticket1 ticket1 = new Ticket1(); Thread thread1 = new Thread(ticket1); thread1.start(); try { Thread.sleep(1000); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } Thread thread2 = new Thread(ticket1); ticket1.flag = false; thread2.start(); } } class Ticket1 implements Runnable{ private static int ticket1 = 10; private Object obj = new Object(); boolean flag = true; @Override public void run() { // TODO Auto-generated method stub if(flag){ while(true){ synchronized (obj) { show(); } } }else{ while(true){ show(); } } } public synchronized void show(){ synchronized (obj) { if(ticket1>0){ try { Thread.sleep(1000); } catch (InterruptedException e) { // TODO Auto-generated catch block e.printStackTrace(); } System.out.println(Thread.currentThread().getName()+":"+ticket1--); } } } }
线程间通讯:
其实就是多个线程在操作同一个资源,但是操作的动作不同。
1:将资源封装成对象。
2:将线程执行的任务(任务其实就是run方法。)也封装成对象。
<span style="font-size:14px;">class Res { String name; String sex; boolean flag = false; } class Input implements Runnable { private Res r ; Input(Res r) { this.r = r; } public void run() { int x = 0; while(true) { synchronized(r) { if(r.flag) try{r.wait();}catch(Exception e){} if(x==0) { r.name="mike"; r.sex="man"; } else { r.name="丽丽"; r.sex = "女"; } x = (x+1)%2; r.flag = true; r.notify(); } } } } class Output implements Runnable { private Res r ; Output(Res r) { this.r = r; } public void run() { while(true) { synchronized(r) { if(!r.flag) try{r.wait();}catch(Exception e){} System.out.println(r.name+"...."+r.sex); r.flag = false; r.notify(); } } } } class InputOutputDemo { public static void main(String[] args) { Res r = new Res(); Input in = new Input(r); Output out = new Output(r); Thread t1 = new Thread(in); Thread t2 = new Thread(out); t1.start(); t2.start(); } } </span>
等待唤醒机制
涉及的方法:
wait:将同步中的线程处于冻结状态。释放了执行权,释放了资格。同时将线程对象存储到线程池中。
notify:唤醒线程池中某一个等待线程。
notifyAll:唤醒的是线程池中的所有线程
注意:
1:这些方法都需要定义在同步中。
2:因为这些方法必须要标示所属的锁。
你要知道 A锁上的线程被wait了,那这个线程就相当于处于A锁的线程池中,只能A锁的notify唤醒。
3:这三个方法都定义在Object类中。为什么操作线程的方法定义在Object类中?
因为这三个方法都需要定义同步内,并标示所属的同步锁,既然被锁调用,而锁又可以是任意对象,那么能被任意对象调用的方法一定定义在Object类中。
wait和sleep区别:
分析这两个方法:从执行权和锁上来分析:
wait:可以指定时间也可以不指定时间。不指定时间,只能由对应的notify或者notifyAll来唤醒。
sleep:必须指定时间,时间到自动从冻结状态转成运行状态(临时阻塞状态)。
wait:线程会释放执行权,而且线程会释放锁。
Sleep:线程会释放执行权,但是不释放锁。