CodeForces 148D-Bag of mice(概率dp)

题意:

袋子里有w个白球b个黑球,现在两个人轮流每次取一个球(不放回),先取到白球的获胜,当后手取走一个球时,袋子里的球会随机的漏掉一个,问先手获胜的概率。

分析:

dp[i][j]表示袋子中i个白球j个黑球,先手取获胜的概率。

有四种情况

先手取到白球,获胜概率1.0*i/(i+j);

后手取到白球,先手输

前两次都取到黑球,漏掉一个黑球,转移到dp[i][j-3]

前两次都取到黑球,漏掉一个白球,转移到dp[i-1][j-2]

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define read freopen("in.txt", "r", stdin)
const ll  INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
const int mod =  1000000007;
int w,b;
double dp[1001][1001];
void solve(){
    memset(dp,0,sizeof(dp));
    for(int i=1;i<=w;++i)
        dp[i][0]=1;//只剩白球,必胜
    for(int i=1;i<=w;++i)
    for(int j=1;j<=b;++j){
        dp[i][j]=1.0*i/(i+j);
        if(j>=3)
        dp[i][j]+=dp[i][j-3]*1.0*j/(i+j)*(j-1)/(i+j-1)*(j-2)/(i+j-2);
        if(i>=1&&j>=2)
        dp[i][j]+=dp[i-1][j-2]*1.0*j/(i+j)*(j-1)/(i+j-1)*i/(i+j-2);
    }
    printf("%.9lf\n",dp[w][b]);
}
int main()
{
while(~scanf("%d%d",&w,&b)){
    solve();
}
return 0;
}
时间: 2024-10-14 04:43:33

CodeForces 148D-Bag of mice(概率dp)的相关文章

Codeforces 148D Bag of mice (概率dp)

D. Bag of mice time limit per test:2 seconds memory limit per test:256 megabytes The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, wh

CF 148d Bag of mice 概率DP 好题

D. Bag of mice The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are

CF 148D. Bag of mice[概率dp]

题目链接:http://codeforces.com/problemset/problem/148/D 题目大意:一袋子里有w个白老鼠,b个黑老鼠:A和B轮流抓老鼠(不放回),谁先抓到白老鼠,谁win:因为B粗鲁,每次抓完一只老鼠,会跑出来一只:A first: 求A win的概率: 题目分析: 此类概率dp的状态比较固定,dp(i , j )表示当前状态Awin的概率: 1:  dp[i][0],A win的概率为 1:dp[0][j] 概率为 0: 2:  dp[i][j]     如下四种

Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃圾,大哥拿来了一袋老鼠,其中有w只白老鼠和b只黑老鼠.胡小兔先抓,先抓到白老鼠的人赢. 每次学姐抓完老鼠之后,总会有另外一只老鼠从袋子里自己跑出来(这只老鼠不算任何人抓的),而胡小兔抓老鼠时则不会发生这样的事. 每次袋子里的每只老鼠被抓到的概率相等,当有一只老鼠跑出来的时候,每只老鼠跑出来的几率也相

CodeForces 148D. Bag of mice(概率dp啊 )

题目链接:http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standard output The dragon and the princess are arguing about what to do on the New Year'

Bag of mice(概率DP)

Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed

Codeforces 148D Bag of mice:概率dp 记忆化搜索

题目链接:http://codeforces.com/problemset/problem/148/D 题意: 一个袋子中有w只白老鼠,b只黑老鼠. 公主和龙轮流从袋子里随机抓一只老鼠出来,不放回,公主先拿. 公主每次抓一只出来.龙每次在抓一只出来之后,会随机有一只老鼠跳出来(被龙吓的了...). 先抓到白老鼠的人赢.若两人最后都没有抓到白老鼠,则龙赢. 问你公主赢的概率. 题解: 表示状态: dp[i][j] = probability to win(当前公主先手,公主赢的概率) i:剩i只白

CodeForces 148D Bag of mice

概率,$dp$. $dp[i][j][0]$表示还剩下$i$个白猫,$j$个黑猫,公主出手的情况下到达目标状态的概率. $dp[i][j][1]$表示还剩下$i$个白猫,$j$个黑猫,龙出手的情况下到达目标状态的概率. 一开始$dp[i][0][0]$均为$1$,答案为$dp[w][b][0]$.递推式很容易写: $dp[i][j][0]=i/(i+j)+j/(i+j)*dp[i][j-1][1]$ $dp[i][j][1]=j/(i+j)*i/(i+j-1)*dp[i-1][j-1][0]+j

cf 148D Bag of mice

The dragon 选一只老鼠,然后会跑掉一只 the princess选一只老鼠,不会跑出另外的老鼠 求the princess赢的概率 1 #include<iostream> 2 #include<string> 3 #include<cstdio> 4 #include<vector> 5 #include<queue> 6 #include<stack> 7 #include<algorithm> 8 #inc

CodeForces 540D Bad Luck Island 概率dp

CodeForces 540D 应该是简单概率dp,由于写得少显得十分蠢萌 求期望逆推,求概率正推,大概是这么个意思,贴一发留恋 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define db double const int maxn=108; db dp[maxn][maxn][maxn]; int main() { int i,j,n,m,k,p; whi