题目大意:有n支队伍进行比赛,每支队伍需要打的比赛次数相同,每场比赛恰好有一支队伍胜,一支队伍败,给出每支队伍目前胜的场数和败的场数,以及每两支队伍还剩下的比赛场数,确定所有可能得冠军的队伍
解题思路:枚举每支队伍,然后让该队伍在接下来的所有比赛中都获胜。
建图的话,就比较简单了,源点连向每场比赛,容量为比赛次数
每场比赛连向比赛队伍,容量为比赛次数
接着每支队伍连向汇点,容量为枚举队伍的总胜场-该队伍的胜场
如果满流,表示该队伍可以得到冠军
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
#define M 1000010
#define N 10010
#define INF 0x3f3f3f3f
struct Edge{
int u, v, cap, flow, next;
}E[M];
struct Dinic{
int head[N], d[N];
int tot, sink, source;
void init() {
memset(head, -1, sizeof(head));
tot = 0;
}
inline void AddEdge(int u, int v, int cap) {
E[tot].u = u; E[tot].v = v; E[tot].cap = cap; E[tot].flow = 0; E[tot].next = head[u]; head[u] = tot++;
u = u ^ v; v = u ^ v; u = u ^ v;
E[tot].u = u; E[tot].v = v; E[tot].cap = 0; E[tot].flow = 0; E[tot].next = head[u]; head[u] = tot++;
}
inline bool bfs(int s) {
int u, v;
memset(d, 0, sizeof(d));
queue<int> Q;
Q.push(s);
d[s] = 1;
while (!Q.empty()) {
u = Q.front(); Q.pop();
if (u == sink) return true;
for (int i = head[u]; ~i; i = E[i].next) {
v = E[i].v;
if (!d[v] && E[i].cap - E[i].flow > 0) {
d[v] = d[u] + 1;
Q.push(v);
}
}
}
return false;
}
int dfs(int x, int a) {
if (x == sink || a == 0)
return a;
int f, flow = 0;
for (int i = head[x]; ~i; i = E[i].next) {
int v = E[i].v;
if (d[v] == d[x] + 1 && E[i].cap - E[i].flow > 0) {
f = dfs(v, min(a, E[i].cap - E[i].flow));
E[i].flow += f;
E[i^1].flow -= f;
flow += f;
a -= f;
if (!a) break;
}
}
if (flow == 0) d[x] = 0;
return flow;
}
int Maxflow(int source, int sink) {
int flow = 0;
this->sink = sink;
while (bfs(source)) flow += dfs(source, INF);
return flow;
}
};
Dinic dinic;
#define maxn 30
int n;
int win[maxn], fight[maxn][maxn], all, Max;
void init() {
scanf("%d", &n);
all = 0;
Max = -INF;
int t;
for (int i = 1; i <= n; i++) {
scanf("%d%d", &win[i], &t);
Max = max(Max, win[i]);
if (i == 1)
all += win[i] + t;
}
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++) {
scanf("%d", &fight[i][j]);
if (i == 1)
all += fight[i][j];
}
}
void solve() {
bool flag = false;
int total, source = 0, sink = N - 1, cnt;
for (int i = 1; i <= n; i++) {
total = win[i];
for (int j = 1; j <= n; j++)
total += fight[i][j];
if (total < Max)
continue;
cnt = n + 1;
dinic.init();
int Sum = 0;
for (int j = 1; j <= n; j++) {
if (j != i) dinic.AddEdge(j, sink, total - win[j]);
for (int k = j + 1; k <= n; k++) {
if (j == i || k == i)
continue;
dinic.AddEdge(source, cnt, fight[j][k]);
Sum += fight[j][k];
dinic.AddEdge(cnt, j, fight[j][k]);
dinic.AddEdge(cnt++, k, fight[j][k]);
}
}
int MaxFlow = dinic.Maxflow(source, sink);
if (MaxFlow == Sum) {
if (flag)
printf(" ");
flag = true;
printf("%d", i);
}
}
printf("\n");
}
int main() {
int test;
scanf("%d", &test);
while (test--) {
init();
solve();
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
时间: 2024-10-07 05:16:42