给出一个 n 个点 m条边的无向图,每条边有边权,共 Q次询问,每次给出 \(k\)条边,问这些边能否同时在一棵最小生成树上。
Solution
所有最小生成树中某权值的边的数量是一定的
加完小于某权值的所有边后图的连通性是一样的
对于每个询问,每种权值分开考虑
对每个权值,加完小于这条边的权值后的所有边
然后判断这个权值在缩点后图上是否成环
因此需要跑一次 Kruskal 并且记录下对于每条边,加完权值小于它的所有边后,其两个端点所在的连通块编号
这样询问时只需要拿着并查集搞就可以了
#include <bits/stdc++.h>
using namespace std;
const int N = 1000005;
struct edge {
int u,v,w,id,bu,bv;
bool operator < (const edge &b) const {
return w < b.w;
}
} e[N];
bool cmp(const edge &a, const edge &b) {
return a.id < b.id;
}
int n,m,q,t1,t2,t3,f[N];
int find(int x) { return f[x] == x ? x : f[x] = find(f[x]); }
void merge(int i,int j) {if(find(i)!=find(j)) f[find(i)]=find(j); }
int solve(vector <edge> v) {
/*cout<<"solve"<<endl;
for(int i=0;i<v.size();i++) cout<<v[i].bu<<" "<<v[i].bv<<" "<<v[i].w<<endl;
cout<<"-----"<<endl;*/
map<int,int> mp;
for(int i=0;i<v.size();i++) mp[v[i].bu]++, mp[v[i].bv]++;
int ind=0;
for(map<int,int>::iterator it=mp.begin();it!=mp.end();it++)
it->second = ++ind;
for(int i=0;i<v.size();i++) v[i].bu=mp[v[i].bu], v[i].bv=mp[v[i].bv];
for(int i=1;i<=ind;i++) f[i]=i;
int flag=1;
for(int i=0;i<v.size();i++) {
if(find(v[i].bu)==find(v[i].bv)) flag=0;
merge(v[i].bu,v[i].bv);
}
return flag;
}
int main() {
ios::sync_with_stdio(false);
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++) {
scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
e[i].id=i;
}
sort(e+1,e+m+1);
for(int i=1;i<=n;i++) f[i]=i;
for(int i=1;i<=m;i++) {
if(e[i].w != e[i-1].w) {
int pos=i;
while(e[pos].w == e[pos+1].w && pos<m) ++pos;
for(int j=i;j<=pos;j++) e[j].bu=find(e[j].u), e[j].bv=find(e[j].v);
}
merge(e[i].u,e[i].v);
}
scanf("%d",&q);
sort(e+1,e+m+1,cmp);
//for(int i=1;i<=m;i++) cout<<e[i].bu<<" "<<e[i].bv<<endl;
for(int i=1;i<=q;i++) {
int tot;
scanf("%d",&tot);
vector <edge> v;
for(int j=1;j<=tot;j++) {
int tmp;
scanf("%d",&tmp);
v.push_back(e[tmp]);
}
sort(v.begin(),v.end());
v.push_back((edge){0,0,0});
int flag = 1;
for(int j=0;j<tot;j++) {
int pos=j;
while(v[j].w == v[j+1].w && pos<tot-1) ++pos;
vector <edge> vv;
for(int k=j;k<=pos;k++) vv.push_back(v[k]);
flag &= solve(vv);
j=pos;
}
if(flag) puts("YES");
else puts("NO");
}
}
原文地址:https://www.cnblogs.com/mollnn/p/12318154.html
时间: 2024-10-26 04:24:52