TCP的SYN队列和Accept队列

首先我们必须明白,处于“LISTENING”状态的TCP socket,有两个独立的队列:

  • SYN队列(SYN Queue)
  • Accept队列(Accept Queue)

这两个术语有时也被称为“reqsk_queue”,“ACK backlog”,“listen backlog”,甚至“TCP backlog”,但是这篇文章中我们使用上面两个术语以免造成混淆。

SYN队列

SYN队列存储了收到SYN包的连接(对应内核代码的结构体:struct inet_request_sock)。它的职责是回复SYN+ACK包,并且在没有收到ACK包时重传,直到超时。在Linux下,重传的次数为:

1 $ sysctl net.ipv4.tcp_synack_retries
2 net.ipv4.tcp_synack_retries = 5

文档中对tcp_synack_retries的描述如下:

1 tcp_synack_retries - int整型
2
3     对于一个被动TCP连接,重传SYNACKs的次数。该值不能超过255。
4     默认值为5,如果初始RTO是1秒,那么对应的最后一次重传是31秒。
5     对应的最后一次超时是63秒之后。

发送完SYN+ACK之后,SYN队列等待从客户端发出的ACK包(也即三次握手的最后一个包)。当收到ACK包时,首先找到对应的SYN队列,再在对应的SYN队列中检查相关的数据看是否匹配,如果匹配,内核将该连接相关的数据从SYN队列中移除,创建一个完整的连接(对应内核代码的结构体:struct inet_sock),并将这个连接加入Accept队列。

Accept队列

Accept队列中存放的是已建立好的连接,也即等待被上层应用程序取走的连接。当进程调用accept(),这个socket从队列中取出,传递给上层应用程序。

这就是Linux处理SYN包的一个简单描述。顺便一提,当socket开启了TCP_DEFER_ACCEPTTCP_FASTOPEN时,工作方式将会有细微不同,本文不做介绍。

队列大小限制

应用程序通过调用系统调用listen(2),传入backlog参数,来设置SYN队列和Accept队列的最大大小。比如下面这样,将SYN队列和Accept队列的最大大小同时设置为1024:

1 listen(sfd, 1024)

注意,在4.3版本之前的内核,SYN队列的大小是用另一种方式计算。

SYN队列的最大大小以前是用net.ipv4.tcp_max_syn_backlog来配置,但是现在已经不再使用了。现在用net.core.somaxconn来同时表示SYN队列和Accept队列的最大大小。在我们的服务器上,我们将它设置为16k:

1 $ sysctl net.core.somaxconn
2 net.core.somaxconn = 16384

队列设置为多大合适

知道了上面这些信息后,你可能会问,队列设置为多大合适?队列设置为多大合适

答案是:看情况。对于大多数的TCP服务来说,这并不太重要。比如,Go语言1.11版本之前,并没有提供设置队列大小的方法。

尽管如此,也存在一些合理的原因,需要增大队列的大小:

  • 当建立连接的请求速度确实很大时,即使是对于一个高性能的服务来说,SYN队列也可能需要设置的大一些。
  • SYN队列的大小,换言之就是等待ACK包的连接数。也即与客户端的平均往返时间越大,堆积在SYN队列中的连接就越多。对于那些大部分客户端都距离服务器很远的场景,比如说往返时间几百毫秒以上,可以将队列大小设置的大一些。
  • TCP_DEFER_ACCEPT选项如果打开了,会导致socket在SYN-RECV状态下维持更长的时间,也即增大了处于SYN队列中的时间。

但是,将backlog设置的过大也会带来不好的影响:

  • SYN队列中的每一个槽位都需要占用一些内存。当遇到SYN Flood攻击时,我们没有必要为这些发起攻击的包浪费资源。SYN队列中的inet_request_sock结构体,在4.14内核下,每个将占用256字节的内存。

linux下,如果想查看SYN队列的当前状态,我们可以使用ss命令来查询SYN-RECV状态的socket。比如如下执行结果,表示80端口的SYN队列中当前有119个元素,443端口则为78。

1 $ ss -n state syn-recv sport = :80 | wc -l
2 119
3 $ ss -n state syn-recv sport = :443 | wc -l
4 78

假如程序调用accept()不够快?还可以通过我们的SystemTap脚本来观察这个数据:resq.stp

如果程序调用accept()不够快会发生什么呢?

  • 后续收到的SYN包,不会被SYN队列处理
  • 后续收到的(用于建立连接的)ACK包,不会被SYN队列处理
  • TcpExtListenOverflows / LINUX_MIB_LISTENOVERFLOWS计数增加
  • TcpExtListenDrops / LINUX_MIB_LISTENDROPS计数增加

发生这种情况时,我们只能寄希望于程序的处理性能稍后能恢复正常,客户端重新发送被服务端丢弃的包。

内核的这种表现对于大部分服务来说是可接受的。顺便一提,可以通过调整net.ipv4.tcp_abort_on_overflow这个全局参数来修改这种表现,但是最好还是不要改这个参数。

可以通过查看nstat的计数来观察Accept队列溢出的状态:

1 $ nstat -az TcpExtListenDrops
2 TcpExtListenDrops     49199     0.0

但是这是一个全局的计数。观察起来不够直观,比如有时我们观察到它在增长,但是所有的服务程序看起来都是正常的。此时我们可以使用ss命令来观察单个监听端口的Accept队列大小:

1 $ ss -plnt sport = :6443|cat
2 State   Recv-Q Send-Q  Local Address:Port  Peer Address:Port
3 LISTEN  0      1024                *:6443             *:*

Recv-Q这一列显示的是处于Accept队列中的socket数量,Send-Q显示的是队列的最大大小。在上面的例子中,我们发现并没有未被程序accept()的socket,但是我们依然发现ListenDrops计数在增长。

这是因为我们的程序只是周期性的短暂卡住不处理新的连接,而非永久性的不处理,过段时间程序又恢复了正常。这种情况下,用ss命令比较难观察这种现象,因此我们写了一个SystemTap脚本,它会hook进内核,把被丢弃的SYN包打印出来:

$ sudo stap -v acceptq.stp
time (us)        acceptq qmax  local addr    remote_addr
1495634198449075  1025   1024  0.0.0.0:6443  10.0.1.92:28585
1495634198449253  1025   1024  0.0.0.0:6443  10.0.1.92:50500
1495634198450062  1025   1024  0.0.0.0:6443  10.0.1.92:65434
...

通过上面的操作,可以观察到哪些SYN包被ListenDrops影响了。从而我们也就可以知道哪些程序在丢失连接。

原文地址:https://www.cnblogs.com/linguoguo/p/12369959.html

时间: 2024-11-07 06:44:47

TCP的SYN队列和Accept队列的相关文章

tcp的半连接与完全连接队列

队列及参数 server端的半连接队列(syn队列) 在三次握手协议中,服务器维护一个半连接队列,该队列为每个客户端的SYN包开设一个条目(服务端在接收到SYN包的时候,就已经创建了request_sock结构,存储在半连接队列中),该条目表明服务器已收到SYN包,并向客户发出确认,正在等待客户的确认包(会进行第二次握手发送SYN+ACK 的包加以确认).这些条目所标识的连接在服务器处于Syn_RECV状态,当服务器收到客户的确认包时,删除该条目,服务器进入ESTABLISHED状态.该队列为S

(转)tcp的半连接与完全连接队列

队列及参数 tcp-sync-queue-and-accept-queue-small.jpg server端的半连接队列(syn队列) 在三次握手协议中,服务器维护一个半连接队列,该队列为每个客户端的SYN包开设一个条目(服务端在接收到SYN包的时候,就已经创建了request_sock结构,存储在半连接队列中),该条目表明服务器已收到SYN包,并向客户发出确认,正在等待客户的确认包(会进行第二次握手发送SYN+ACK 的包加以确认).这些条目所标识的连接在服务器处于Syn_RECV状态,当服

tcp的半连接与完全连接队列(二)

队列及参数 server端的半连接队列(syn队列) 在三次握手协议中,服务器维护一个半连接队列,该队列为每个客户端的SYN包开设一个条目(服务端在接收到SYN包的时候,就已经创建了request_sock结构,存储在半连接队列中),该条目表明服务器已收到SYN包,并向客户发出确认,正在等待客户的确认包(会进行第二次握手发送SYN+ACK 的包加以确认).这些条目所标识的连接在服务器处于Syn_RECV状态,当服务器收到客户的确认包时,删除该条目,服务器进入ESTABLISHED状态.该队列为S

关于TCP全连接队列和半连接队列

转:https://www.toutiao.com/a6721163619758768647/ 在TCP的三次握手中存在着两个队列.backlog.tcp_abort_on_overflow等概念知识点.常见的连接服务异常有很多,如Connection refused等问题.通过对这些知识的理解有助于结合一些排查手段有效地解决一些生产上出现的连接服务异常问题.下面将对这些进行讨论分析. 一.TCP三次握手 握手过程 第一次:client发送syn到server进行握手 第二次:server收到s

tcp的半连接与完全连接队列(三)源码分析

TCP 协议中的 SYN queue 和 accept queue 处理 若要理解本文意图说明的问题,可能需要以下知识背景: listen 系统调用的 backlog 参数含义,以及与 net.core.somaxconn 参数的关系: SYN flood 攻击与防护: SYN queue 和 accept queue 的用途,以及在不同 linux 版本中的实现差异: ---- 在 SYN queue 未满的情况下,在收到 SYN 包后,TCP 协议栈自动回复 SYN,ACK 包,之后在收到

TCP连接:SYN ACK RST UTG PSH FIN

出处http://bbs.csdn.net/topics/370058169 8楼 TCP连接:SYN ACK RST UTG PSH FIN 三次握手:发送端发送一个SYN=1,ACK=0标志的数据包给接收端,请求进行连接,这是第一次握手:接收端收到请求并且允许连接的话,就会发送一个SYN=1,ACK=1标志的数据包给发送端,告诉它,可以通讯了,并且让发送端发送一个确认数据包,这是第二次握手:最后,发送端发送一个SYN=0,ACK=1的数据包给接收端,告诉它连接已被确认,这就是第三次握手.之后

Linux 半连接队列,全连接队列

socket 中 listen api中参数backlog指定的是 全队列大小 accept api是从全队列中获取, 没有就阻塞了, 直到有新连接进来. listen中指定的值大小,有一个最大上限, 这个上限是系统内核中设定的. 在配置文件中: /proc/sys/net/core/somaxconn 这个值默认是128. 三次握手: 客户端发一个syn包, 服务器发一个包(syn+ack), 客户端发一个ack确认包. 至此连接完成 半连接是是未完成队列: /proc/sys/net/ipv

系统拆分解耦利器之消息队列---RabbitMQ-工作队列

[一曲广陵不如晨钟暮鼓] 本文,我们来介绍RabbitMQ中的工作队列.在正式开始之前,我们假设RabbitMQ服务已经启动,运行端口为5672,如果各位看官有更改过默认配置,那么就需要修改为对应端口,保持一致即可. 准备工作: 操作系统:window 7 x64 其他软件:eclipse mars,jdk7,maven 3 --------------------------------------------------------------------------------------

用两个栈来实现一个队列,完成队列的Push和Pop操作。 队列中的元素为int类型

import java.util.Stack; /**  * 用两个栈来实现一个队列,完成队列的Push和Pop操作. 队列中的元素为int类型.  * @author user  *  *思路:队列是先入先出,栈是先入后出,可以将数据压入第一个栈后,在弹出来压入第二个栈,弹得时候直接从第二个栈弹出,弹出后又将  *第二个栈中的所有数据弹出重新压入的一个栈  */ public class Solution {     Stack<Integer> stack1 = new Stack<