ArcGIS教程:检查空间自相关和方向变化

  通过探索数据,您将能够更好地了解测量值之间的空间自相关。这种了解有助于在选择空间预测模型时做出更好的决策。

  空间自相关

  可通过检查不同的采样位置对来探索数据的空间自相关。通过测量两个位置间的距离并绘制这些位置上的值之间的差值平方,可创建半变异函数云。x 轴表示各位置间的距离,y 轴表示这些位置上的值的差值平方。半变异函数中的每个点都表示一个位置对,而不是地图上的单个位置。

  如果存在空间相关性,则距离较近的点对(在 x 轴的最左侧)应具有较小的差值(在 y 轴上的值较小)。随着各个点之间的距离越来越大(点在 x 轴上向右移动),通常,差值的平方也应随之增大(在 y 轴上向上移动)。通常,平方差超过某个距离后就会保持不变。超过这个距离的位置对被视为不相关。

  地统计方法的基本假设是,对于任意两个彼此间的距离和方向都相近的位置,其差值的平方也应相近。这种关系称为平稳性。

  空间自相关可能仅依赖于两个位置之间的距离,这被称为各向同性。不过,考虑不同的方向时,对于不同的距离,可能出现相同的自相关值。其另一种理解是,对于较长的距离,事物在某些方向上比在其他方向上更相似。半变异函数和协方差中都存在这种方向性影响,它被称为各向异性。

  查找各向异性很重要,这是因为如果在自相关中检测到方向上的差异,就可以在半变异函数或协方差模型中考虑这些差异。这反过来又会对地统计预测产生影响。

  利用“半变异函数/协方差云”工具探索空间结构

  半变异函数/协方差云工具可用于研究数据集的自相关。接下来,让我们考虑一下臭氧数据集。注意:在下图中,您可以选择相隔一定距离的所有位置对,方法是在半变异函数云中擦除在那个距离上的所有点。

  

  利用“半变异函数/协方差云”工具查找方向影响

  在前面的示例中,使用了“半变异函数/协方差云”工具来查看数据的全局自相关。不过,查看半变异函数表面时,半变异函数的值中可能存在方向差异。单击显示搜索方向并设置角度和带宽时(如下图所示),将会看到连在一起的位置具有非常类似的值,这是因为半变异函数的值相对较小。

  

  如果更改链接的方向(如下图所示),将会看到一些连在一起的位置具有非常不同的值,这会使得半变异函数的值很大。这表明通常情况下,东北方向上相距 125000 米的位置比西北方向上的位置的差异更大。回想一下,当一个方向上的变化改变得比另一个方向上的快时,这种现象称为各向异性。利用 Geostatistical Analyst 向导对表面进行插值时,可使用考虑到各向异性的半变异函数模型。

  

时间: 2024-10-02 06:47:19

ArcGIS教程:检查空间自相关和方向变化的相关文章

ArcGIS教程:区域插值参数

构建有效模型 与所有地统计插值方法一样,区域插值中的预测准确性取决于模型的准确性.了解此事项后,在地统计向导 中构建有效模型时应多加注意. 由于 ArcGIS Geostatistical Analyst 扩展模块中的区域插值是通过克里金框架实现的,因此交互式变异分析是构建模型的重要步骤.通常很难从视觉上判断协方差曲线的质量,因此为每个经验协方差(下图中的蓝十字)提供了置信区间(下图中的红色垂直线段).如果正确指定了协方差模型,预计有 90% 的经验协方差落在置信区间内.在下图中,12 个经验协

ArcGIS教程:ArcGIS中矢量裁剪栅格图像

(1)是否需要裁剪栅格图象区域通过一个面状的shapefile表达出来? 如果可以,那么就很简单了. 在ArcMap中,调用空间分析扩展模块,将你感兴趣区的shapefile多边形图层设置为掩膜,然后在栅格计算器中重新计算一下你的图象,它就会沿掩膜裁出. 设置掩膜:空间分析工具条的下拉菜单>option里面设置 (2)用任意多边形剪切栅格数据(矢量数据转换为栅格数据) 2.1在ArcCatlog下新建一个要素类(要素类型为:多边形),命名为:ClipPoly.shp 2.2在ArcMap中,加载

ArcGIS教程:ArcGIS栅格数据的合并和剪切

1.合并:ArcToolBox->DataManagement->Raster->Mosaic. 2.剪切:在ArcMap中,调用空间分析扩展模块,将你感兴趣区的shapefile多边形图层设置为掩膜(空间分析工具条的下拉菜单>option里面设置),然后在栅格计算器中重新计算一下你的图象,它就会沿掩膜裁出. 以上教程来源地理国情监测云平台,更多ArcGIS教程及空间地理信息数据请咨询本平台,电话:010-84896208转898.官方微信号DLGQJC,为您提供3S行业知识及每日

ArcGIS教程:ArcGIS中图层添加投影及投影转换

由于GIS描述的是位于地球表面的空间信息,所以在表示时必须嵌入到一个空间参照系中,这个参照系就是坐标系它是根据椭球体等参数建立的.我国目前所用到的三种主要坐标系是:北京1954.西安1980及WGS84. 有了坐标系,即椭球体,数据图层就有了地理坐标,地理坐标是用经纬度表示球面的位置的.为了能够将地图从三维地理坐标通过投影转换成二位平面坐标,还要进行投影,这样的坐标系叫做投影坐标系.常用的投影有高斯-克吕格(Gauss-Kruger)投影,阿尔博斯(Albers Equal-Area Conic

ArcGIS教程:绘制数据

任何分析的第一步都是绘制和检查数据.这可以提供数据集的空间组成部分的第一印象,而且可能给出异常值和错误数据值.全球趋势和其他系数间的空间自相关的主导方向的指示,所有这些在开发正确反映感兴趣的现象的插值模型的过程中都非常重要. ArcGIS 提供很多方法来可视化数据:ArcMap 可以访问用于高亮显示数据不同方面的很多分类方案和色带,而ArcScene 可以在 3D 空间渲染数据,这在查找局部异常值和全球趋势时非常有用.尽管没有正确的方法来显示数据,下图显示了相同数据的不同渲染,从中可以看出不同方

ArcGIS教程:3D Analyst基础知识

创建3D视图 以三维形式查看数据能为您提供一个全新的认识.通过三维视图可以深入了解通过相同数据的平面地图不易察觉的内容.例如,您不必根据配置等值线来推断是否存在山谷,您能够实际看到山谷和感到谷底和谷脊的高度差异. ArcGlobe 和 ArcScene 可用于构建多图层 3D 环境,并控制如何对各图层进行符号化.渲染各图层和在 3D 空间中定位各图层.还可以控制 3D 视图的全局属性,如照明度或垂直夸大.可以通过以下方式选择要素:使用要素的属性或要素相对于其他要素的位置,或者在场景或地球中单击各

ArcGIS教程:地统计模型的组成

地统计(克里金法)模型包括多个组成部分:检查数据(分布.趋势.方向组成和异常值),计算经验半变异函数或协方差值,根据经验值拟合模型,生成克里金方程矩阵以及对其进行求解以为输出表面中的每个位置获取预测值及其关联误差(不确定性). 计算经验半变异函数 与大多数插值法一样,克里金法基于距离越近的事物就越相似这一基本原则(此处量化为空间自相关).经验半变异函数是一种发掘这种关系的方法.在距离上彼此接近的点对应比互相远离的点对差异小.在经验半变异函数中可检查使这种假设成立的范围. 拟合模型 拟合通过用点定

ArcGIS教程:根据经验半变异函数拟合模型

半变异函数/协方差建模是空间描述和空间预测之间的关键步骤.地统计的主要应用是预测未采样位置处的属性值(克里金法). 经验半变异函数和协方差可提供有关数据集的空间自相关的信息.但是,不提供所有可能方向和距离的信息.因此,为确保克里金法预测的克里金法方差为正值,根据经验半变异函数/协方差拟合模型(即连续函数或曲线)是很有必要的. 经验半变异函数/协方差值的不同视图 地统计向导可提供经验半变异函数值的三种不同视图.可以使用任意数量(一个.两个或全部三个)的视图来帮助您根据数据拟合模型.默认视图显示了已

ArcGIS教程:了解测量误差

克里金方法有三种形式 - 普通克里金法.简单克里金法和泛克里金法 - 使用测量误差模型.当同一位置可能具有多个不同的观测值时会出现测量误差.例如,有时需要从地面或空中提取样本,然后将该样本拆分为多个要测量的子样本.如果测量样本的仪器存在差异,则可能需要执行此操作.再比如,可能会将土壤样本的子样本送往不同的实验室进行分析.有时,仪器准确性方面的变化可能已被证实.此时,可能要向模型中输入已知的测量变化. 测量误差模型 测量误差模型是 Z(s) = μ(s) + ε(s) + δ(s), 其中,δ(s