Large-scale Scene Understanding (LSUN)

Large-scale Scene Understanding (LSUN)

http://sunw.csail.mit.edu/

下载数据了,还没来得及用呢,没想好怎么用,数据也没看,因为是lmdb格式的,不能直接看。

时间: 2024-10-14 03:30:50

Large-scale Scene Understanding (LSUN)的相关文章

Lessons learned developing a practical large scale machine learning system

原文:http://googleresearch.blogspot.jp/2010/04/lessons-learned-developing-practical.html Lessons learned developing a practical large scale machine learning system Tuesday, April 06, 2010 Posted by Simon Tong, Google Research When faced with a hard pre

Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding

Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding 深度学习思想越来越火,在今年的CVPR 2015 文章中相关文章就有20多篇,可见是非常火的.最近在做关于语义分割和场景解析的内容,看到这篇文章后也是非常高兴. CN24 is a complete semantic segmentation framework using fully convoluti

Machine Learning - XVII. Large Scale Machine Learning大规模机器学习 (Week 10)

http://blog.csdn.net/pipisorry/article/details/44904649 机器学习Machine Learning - Andrew NG courses学习笔记 Large Scale Machine Learning大规模机器学习 Learning With Large Datasets大数据集学习 Stochastic Gradient Descent随机梯度下降 Mini-Batch Gradient Descent迷你批处理梯度下降 Stochas

Week 10:Large Scale Machine Learning课后习题解答

大家好,我是Mac Jiang,今天和大家分享Coursera-Stanford University-Machine Learning-Week 10:Large Scale Machine Learning的课后习题解答.虽然我的答案通过了系统测试,但是我的分析不一定是正确的,如果各位博友发现错误或有更好的想法,请留言联系,谢谢.希望我的博客对您的学习有所帮助! 这单元,吴恩达老师主要讲了五个方面的内容: 1.随机梯度下降(Stochastic Gradient Descent),比较了随机

(原创)Stanford Machine Learning (by Andrew NG) --- (week 10) Large Scale Machine Learning & Application Example

本栏目来源于Andrew NG老师讲解的Machine Learning课程,主要介绍大规模机器学习以及其应用.包括随机梯度下降法.维批量梯度下降法.梯度下降法的收敛.在线学习.map reduce以及应用实例:photo OCR.课程地址为:https://www.coursera.org/course/ml (一)大规模机器学习 从前面的课程我们知道,如果我们的系统是high variance的,那么增加样本数会改善我们的系统,假设现在我们有100万个训练样本,可想而知,如果使用梯度下降法,

论文笔记之:Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation

Large Scale Distributed Semi-Supervised Learning Using Streaming Approximation Google 官方 Blog 链接:https://research.googleblog.com/2016/10/graph-powered-machine-learning-at-google.html 今天讲的是一个基于 streaming approximation 的大规模分布式半监督学习框架,出自 Google . 摘要:众所周

Large Scale Metric Learning from Equivalence Constraints (KISSME) CVPR 2012

In this paper, we raise important issues on scalability and the required degree of supervision of existing Mahalanobis metric learning methods. Often rather tedious optimization procedures are applied that become computationally intractable on a larg

2015-CVPR-Deeply Learned Attributes for Crowed Scene Understanding

论文的链接:http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Shao_Deeply_Learned_Attributes_2015_CVPR_paper.pdf 这篇文章是通过 Attribute对Crowd Scene的Video进行理解, 并利用CNN学习描述属性的特征. 文章的主要贡献: 1. 构建一个新的大规模WWW Crowd的数据集(8257个场景,10000个视频), 并定于了94种属性 2. 构建C

Coursera机器学习-第十周-Large Scale Machine Learning

Gradient Descent with Large Datasets Learning With Large Datasets 我们已经知道,得到一个高效的机器学习系统的最好的方式之一是,用一个低偏差(low bias)的学习算法,然后用很多数据来训练它. 下面是一个区分混淆词组的例子: 但是,大数据存在一个问题,当样本容量m=1,000时还行,但是当m=100,000,000呢?请看一下梯度下降的更新公式: 计算一个θ值需要对1亿个数据进行求和,计算量显然太大,所以时间消耗肯定也就大了.