【OpenCV】SIFT原理与源码分析:方向赋值

《SIFT原理与源码分析》系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html

由前一篇《关键点搜索与定位》,我们已经找到了关键点。为了实现图像旋转不变性,需要根据检测到的关键点局部图像结构为特征点方向赋值。也就是在findScaleSpaceExtrema()函数里看到的alcOrientationHist()语句:

// 计算梯度直方图
float omax = calcOrientationHist(gauss_pyr[o*(nOctaveLayers+3) + layer],
                                                Point(c1, r1),
                                                cvRound(SIFT_ORI_RADIUS * scl_octv),
                                                SIFT_ORI_SIG_FCTR * scl_octv,
                                                hist, n);

我们使用图像的梯度直方图法求关键点局部结构的稳定方向。

梯度方向和幅值

在前文中,精确定位关键点后也找到改特征点的尺度值σ,根据这一尺度值,得到最接近这一尺度值的高斯图像:

使用有限差分,计算以关键点为中心,以3×1.5σ为半径的区域内图像梯度的幅角和幅值,公式如下:

梯度直方图

在完成关键点邻域内高斯图像梯度计算后,使用直方图统计邻域内像素对应的梯度方向和幅值。

有关直方图的基础知识可以参考《数字图像直方图》,可以看做是离散点的概率表示形式。此处方向直方图的核心是统计以关键点为原点,一定区域内的图像像素点对关键点方向生成所作的贡献。

梯度方向直方图的横轴是梯度方向角,纵轴是剃度方向角对应的梯度幅值累加值。梯度方向直方图将0°~360°的范围分为36个柱,每10°为一个柱。下图是从高斯图像上求取梯度,再由梯度得到梯度方向直方图的例图。

在计算直方图时,每个加入直方图的采样点都使用圆形高斯函数函数进行了加权处理,也就是进行高斯平滑。这主要是因为SIFT算法只考虑了尺度和旋转不变形,没有考虑仿射不变性。通过高斯平滑,可以使关键点附近的梯度幅值有较大权重,从而部分弥补没考虑仿射不变形产生的特征点不稳定。

通常离散的梯度直方图要进行插值拟合处理,以求取更精确的方向角度值。(这和《关键点搜索与定位》中插值的思路是一样的)。

关键点方向

直方图峰值代表该关键点处邻域内图像梯度的主方向,也就是该关键点的主方向。在梯度方向直方图中,当存在另一个相当于主峰值    80%能量的峰值时,则将这个方向认为是该关键点的辅方向。所以一个关键点可能检测得到多个方向,这可以增强匹配的鲁棒性。Lowe的论文指出大概有15%关键点具有多方向,但这些点对匹配的稳定性至为关键。

获得图像关键点主方向后,每个关键点有三个信息(x,y,σ,θ):位置、尺度、方向。由此我们可以确定一个SIFT特征区域。通常使用一个带箭头的圆或直接使用箭头表示SIFT区域的三个值:中心表示特征点位置,半径表示关键点尺度(r=2.5σ),箭头表示主方向。具有多个方向的关键点可以复制成多份,然后将方向值分别赋给复制后的关键点。如下图:

源码

// Computes a gradient orientation histogram at a specified pixel
// 计算特定点的梯度方向直方图
static float calcOrientationHist( const Mat& img, Point pt, int radius,
                                  float sigma, float* hist, int n )
{
    //len:2r+1也就是以r为半径的圆(正方形)像素个数
    int i, j, k, len = (radius*2+1)*(radius*2+1);  

    float expf_scale = -1.f/(2.f * sigma * sigma);
    AutoBuffer<float> buf(len*4 + n+4);
    float *X = buf, *Y = X + len, *Mag = X, *Ori = Y + len, *W = Ori + len;
    float* temphist = W + len + 2;  

    for( i = 0; i < n; i++ )
        temphist[i] = 0.f;  

    // 图像梯度直方图统计的像素范围
    for( i = -radius, k = 0; i <= radius; i++ )
    {
        int y = pt.y + i;
        if( y <= 0 || y >= img.rows - 1 )
            continue;
        for( j = -radius; j <= radius; j++ )
        {
            int x = pt.x + j;
            if( x <= 0 || x >= img.cols - 1 )
                continue;  

            float dx = (float)(img.at<short>(y, x+1) - img.at<short>(y, x-1));
            float dy = (float)(img.at<short>(y-1, x) - img.at<short>(y+1, x));  

            X[k] = dx; Y[k] = dy; W[k] = (i*i + j*j)*expf_scale;
            k++;
        }
    }  

    len = k;  

    // compute gradient values, orientations and the weights over the pixel neighborhood
    exp(W, W, len);
    fastAtan2(Y, X, Ori, len, true);
    magnitude(X, Y, Mag, len);   

    // 计算直方图的每个bin
    for( k = 0; k < len; k++ )
    {
        int bin = cvRound((n/360.f)*Ori[k]);
        if( bin >= n )
            bin -= n;
        if( bin < 0 )
            bin += n;
        temphist[bin] += W[k]*Mag[k];
    }  

    // smooth the histogram
    // 高斯平滑
    temphist[-1] = temphist[n-1];
    temphist[-2] = temphist[n-2];
    temphist[n] = temphist[0];
    temphist[n+1] = temphist[1];
    for( i = 0; i < n; i++ )
    {
        hist[i] = (temphist[i-2] + temphist[i+2])*(1.f/16.f) +
            (temphist[i-1] + temphist[i+1])*(4.f/16.f) +
            temphist[i]*(6.f/16.f);
    }  

    // 得到主方向
    float maxval = hist[0];
    for( i = 1; i < n; i++ )
        maxval = std::max(maxval, hist[i]);  

    return maxval;
}  

这一步比较简单~参见《SIFT原理与源码分析》。

本文转自:http://blog.csdn.net/xiaowei_cqu/article/details/8096072

时间: 2024-10-11 21:29:14

【OpenCV】SIFT原理与源码分析:方向赋值的相关文章

OpenCV SIFT原理与源码分析

http://blog.csdn.net/xiaowei_cqu/article/details/8069548 SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition from Local Scale-Invariant Features>)提出的高效区域检测算法,在2004年(<Distinctive Image Features from Scal

【OpenCV】SIFT原理与源码分析:DoG尺度空间构造

<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 尺度空间理论 自然界中的物体随着观测尺度不同有不同的表现形态.例如我们形容建筑物用“米”,观测分子.原子等用“纳米”.更形象的例子比如Google地图,滑动鼠标轮可以改变观测地图的尺度,看到的地图绘制也不同:还有电影中的拉伸镜头等等…… 尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目标由近到远时目标在视网膜上的形成过程.尺度越大图像越模糊. 为什么要

【OpenCV】SIFT原理与源码分析:关键点描述

<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一篇<方向赋值>,为找到的关键点即SIFT特征点赋了值,包含位置.尺度和方向的信息.接下来的步骤是关键点描述,即用用一组向量将这个关键点描述出来,这个描述子不但包括关键点,也包括关键点周围对其有贡献的像素点.用来作为目标匹配的依据(所以描述子应该有较高的独特性,以保证匹配率),也可使关键点具有更多的不变特性,如光照变化.3D视点变化等. SIFT

【OpenCV】SIFT原理与源码分析:关键点搜索与定位

<SIFT原理与源码分析>系列文章索引:http://www.cnblogs.com/tianyalu/p/5467813.html 由前一步<DoG尺度空间构造>,我们得到了DoG高斯差分金字塔: 如上图的金字塔,高斯尺度空间金字塔中每组有五层不同尺度图像,相邻两层相减得到四层DoG结果.关键点搜索就在这四层DoG图像上寻找局部极值点. DoG局部极值点 寻找DoG极值点时,每一个像素点和它所有的相邻点比较,当其大于(或小于)它的图像域和尺度域的所有相邻点时,即为极值点.如下图所

【OpenCV】SIFT原理与源码分析

SIFT简介 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,是由David G. Lowe在1999年(<Object Recognition from Local Scale-Invariant Features>)提出的高效区域检测算法,在2004年(<Distinctive Image Features from Scale-Invariant Keypoints>)得以完善. SIFT特征对旋转.尺度缩放.亮度变化等保持不变性

OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波

http://blog.csdn.net/chenyusiyuan/article/details/8710462 OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 2013-03-23 17:44 16963人阅读 评论(28) 收藏 举报 分类: 机器视觉(34) 版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] KAZE系列笔记: OpenCV学习笔记(27)KAZE 算法原理与源码分析(一)非线性扩散滤波 OpenCV学习笔记(28)KA

【Spring】Spring&amp;WEB整合原理及源码分析

表现层和业务层整合: 1. Jsp/Servlet整合Spring: 2. Spring MVC整合SPring: 3. Struts2整合Spring: 本文主要介绍Jsp/Servlet整合Spring原理及源码分析. 一.整合过程 Spring&WEB整合,主要介绍的是Jsp/Servlet容器和Spring整合的过程,当然,这个过程是Spring MVC或Strugs2整合Spring的基础. Spring和Jsp/Servlet整合操作很简单,使用也很简单,按部就班花不到2分钟就搞定了

ConcurrentHashMap实现原理及源码分析

ConcurrentHashMap实现原理 ConcurrentHashMap源码分析 总结 ConcurrentHashMap是Java并发包中提供的一个线程安全且高效的HashMap实现(若对HashMap的实现原理还不甚了解,可参考我的另一篇文章HashMap实现原理及源码分析),ConcurrentHashMap在并发编程的场景中使用频率非常之高,本文就来分析下ConcurrentHashMap的实现原理,并对其实现原理进行分析(JDK1.7). ConcurrentHashMap实现原

caffe中HingeLossLayer层原理以及源码分析

输入: bottom[0]: NxKx1x1维,N为样本个数,K为类别数.是预测值. bottom[1]: Nx1x1x1维, N为样本个数,类别为K时,每个元素的取值范围为[0,1,2,-,K-1].是groundTruth. 输出: top[0]: 1x1x1x1维, 求得是hingeLoss. 关于HingeLoss: p: 范数,默认是L1范数,可以在配置中设置为L1或者L2范数. :指示函数,如果第n个样本的真实label为k,则为,否则为-1. tnk: bottom[0]中第n个样