Harry and Magical Computer
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 472 Accepted Submission(s): 222
Problem Description
In reward of being yearly outstanding magic student, Harry gets a magical computer. When the computer begins to deal with a process, it will work until the ending of the processes. One day the computer got n processes to deal with. We number the processes from
1 to n. However there are some dependencies between some processes. When there exists a dependencies (a, b), it means process b must be finished before process a. By knowing all the m dependencies, Harry wants to know if the computer can finish all the n processes.
Input
There are several test cases, you should process to the end of file.
For each test case, there are two numbers n m on the first line, indicates the number processes and the number of dependencies. 1≤n≤100,1≤m≤10000
The next following m lines, each line contains two numbers a b, indicates a dependencies (a, b). 1≤a,b≤n
Output
Output one line for each test case.
If the computer can finish all the process print "YES" (Without quotes).
Else print "NO" (Without quotes).
Sample Input
3 2 3 1 2 1 3 3 3 2 2 1 1 3
Sample Output
YES NO
Source
判断拓扑排序是否能够完成,拓扑排序不能完成的条件是没有环,只要判断图里是否有环是否就可以了,用flody和深搜应该都可以吧,我用的flody做的。
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> using namespace std; int map[150][150]; int n,m; void flody() { for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) if(map[i][k]&&map[k][j]) map[i][j]=1; } int main() { while(~scanf("%d%d",&n,&m)) { memset(map,0,sizeof(map)); int sign=0; int a,b; for(int i=0;i<m;i++) { scanf("%d%d",&a,&b); if(a==b) { sign=1; continue; } map[a][b]=1; } if(sign) printf("NO\n"); else { flody(); for(int i=1;i<=n;i++) if(map[i][i]) sign=1; if(sign) printf("NO\n"); else printf("YES\n"); } } return 0; }