Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 23976 Accepted Submission(s):
8199
Problem Description
Now I think you have got an AC in Ignatius.L‘s "Max
Sum" problem. To be a brave ACMer, we always challenge ourselves to more
difficult problems. Now you are faced with a more difficult
problem.
Given a consecutive number sequence S1,
S2, S3, S4 ...
Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤
Sx ≤ 32767). We define a function sum(i, j) =
Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now
given an integer m (m > 0), your task is to find m pairs of i and j which
make sum(i1, j1) + sum(i2,
j2) + sum(i3, j3) + ... +
sum(im, jm) maximal (ix ≤
iy ≤ jx or ix ≤
jy ≤ jx is not allowed).
But I`m
lazy, I don‘t want to write a special-judge module, so you don‘t have to output
m pairs of i and j, just output the maximal summation of
sum(ix, jx)(1 ≤ x ≤ m) instead.
^_^
Input
Each test case will begin with two integers m and n,
followed by n integers S1, S2,
S3 ... Sn.
Process to the end of
file.
Output
Output the maximal summation described above in one
line.
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
Sample Output
6
8
#include<iostream> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int MAX = 1e6 + 10; const int MIN = -1e8; int curr[MAX], pre[MAX], a[MAX]; int max_sum, n, m; int main() { while(cin >> m >> n) { for(int i = 1; i <= n; i++) cin >> a[i]; memset(curr,0,sizeof(curr)); memset(pre,0,sizeof(pre)); int j = 0; for(int i = 1; i <= m; i++) { max_sum = MIN; for(j = i; j <= n; j++) { curr[j] = max(curr[j - 1], pre[j - 1]) + a[j]; /* pre[j-1]表示的是上一个状态中i...j-1的最大值, max_sum更新之后表示的i...j的最大值,所以不能写反了 */ pre[j - 1] = max_sum; max_sum = max(max_sum, curr[j]); } //pre[j-1]中始终保持着前一个状态的最大值,这个很重要 pre[j - 1] = max_sum; } cout << max_sum << endl; } return 0; }