poj 2007 Scrambled Polygon(极角排序)

http://poj.org/problem?id=2007

Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6701   Accepted: 3185

Description

A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the vertices of the polygon. When one starts at any vertex of a closed polygon and traverses each bounding line segment exactly once, one comes back to the starting vertex.

A closed polygon is called convex if the line segment joining any two points of the polygon lies in the polygon. Figure 1 shows a closed polygon which is convex and one which is not convex. (Informally, a closed polygon is convex if its border doesn‘t have any "dents".) 

The subject of this problem is a closed convex polygon in the coordinate plane, one of whose vertices is the origin (x = 0, y = 0). Figure 2 shows an example. Such a polygon will have two properties significant for this problem.

The first property is that the vertices of the polygon will be confined to three or fewer of the four quadrants of the coordinate plane. In the example shown in Figure 2, none of the vertices are in the second quadrant (where x < 0, y > 0).

To describe the second property, suppose you "take a trip" around the polygon: start at (0, 0), visit all other vertices exactly once, and arrive at (0, 0). As you visit each vertex (other than (0, 0)), draw the diagonal that connects the current vertex with (0, 0), and calculate the slope of this diagonal. Then, within each quadrant, the slopes of these diagonals will form a decreasing or increasing sequence of numbers, i.e., they will be sorted. Figure 3 illustrates this point. 
 

Input

The input lists the vertices of a closed convex polygon in the plane. The number of lines in the input will be at least three but no more than 50. Each line contains the x and y coordinates of one vertex. Each x and y coordinate is an integer in the range -999..999. The vertex on the first line of the input file will be the origin, i.e., x = 0 and y = 0. Otherwise, the vertices may be in a scrambled order. Except for the origin, no vertex will be on the x-axis or the y-axis. No three vertices are colinear.

Output

The output lists the vertices of the given polygon, one vertex per line. Each vertex from the input appears exactly once in the output. The origin (0,0) is the vertex on the first line of the output. The order of vertices in the output will determine a trip taken along the polygon‘s border, in the counterclockwise direction. The output format for each vertex is (x,y) as shown below.

Sample Input

0 0
70 -50
60 30
-30 -50
80 20
50 -60
90 -20
-30 -40
-10 -60
90 10

Sample Output

(0,0)
(-30,-40)
(-30,-50)
(-10,-60)
(50,-60)
(70,-50)
(90,-20)
(90,10)
(80,20)
(60,30)

Source

Rocky Mountain 2004

××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××

这题,,,,,这什么玩意啊

推荐个网站:http://www.cnblogs.com/devtang/archive/2012/02/01/2334977.html

《叉积排序,也就是可以排180度以内的,超出就会出错,
因为正弦函数在180内为正数,180到360为负数。》
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#include <math.h>

#define MAXX 105

using namespace std;

typedef struct point
{
    int x,y;
}point;
typedef struct line
{
    point st,ed;
}beline;

int crossProduct(point a,point b,point c)
{
    return (c.x-a.x)*(b.y-a.y)-(c.y-a.y)*(b.x-a.x);
}

double Dist(point a,point b)
{
    return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}

point c[MAXX];
point stk[MAXX];
int top;
bool cmp(point a,point b)
{
    int len=crossProduct(c[0],a,b);
    if(len == 0)
        return Dist(c[0],a)<Dist(c[0],b);
    else
        return len<0;
}

int main()
{
    int i,j,k,t,x,y;
    i=0;
    while(scanf("%d%d",&x,&y)!=EOF)
    {
        c[i].x=x;
        c[i].y=y;
        i++;
    }
    sort(c+1,c+i,cmp);
    for(int j=0; j<i; j++)
        printf("(%d,%d)\n",c[j].x,c[j].y);
}

poj 2007 Scrambled Polygon(极角排序)

时间: 2024-10-13 22:43:58

poj 2007 Scrambled Polygon(极角排序)的相关文章

poj 2007 Scrambled Polygon 极角排序

1 /** 2 极角排序输出,,, 3 主要atan2(y,x) 容易失精度,,用 4 bool cmp(point a,point b){ 5 if(cross(a-tmp,b-tmp)>0) 6 return 1; 7 if(cross(a-tmp,b-tmp)==0) 8 return length(a-tmp)<length(b-tmp); 9 return 0; 10 } 11 **/ 12 #include <iostream> 13 #include <algo

POJ 2007 Scrambled Polygon 极角序 水

LINK 题意:给出一个简单多边形,按极角序输出其坐标. 思路:水题.对任意两点求叉积正负判断相对位置,为0则按长度排序 /** @Date : 2017-07-13 16:46:17 * @FileName: POJ 2007 凸包极角序.cpp * @Platform: Windows * @Author : Lweleth ([email protected]) * @Link : https://github.com/ * @Version : $Id$ */ #include <std

简单几何(极角排序) POJ 2007 Scrambled Polygon

题目传送门 题意:裸的对原点的极角排序,凸包貌似不行. /************************************************ * Author :Running_Time * Created Time :2015/11/3 星期二 14:46:47 * File Name :POJ_2007.cpp ************************************************/ #include <cstdio> #include <al

POJ 2007 Scrambled Polygon(简单极角排序)

水题,根本不用凸包,就是一简单的极角排序. 叉乘<0,逆时针. #include <iostream> #include <cstdio> #include <cstring> #include <string> #include <algorithm> using namespace std; const int maxn=55; struct point { double x,y; } p[maxn]; double cross(poi

POJ 2007 Scrambled Polygon (简单极角排序)

题目链接 题意 : 对输入的点极角排序 思路 : 极角排序方法 #include <iostream> #include <cmath> #include <stdio.h> #include <algorithm> using namespace std; struct point { double x,y; }p[50],pp; double cross(point a,point b,point c) { return (a.x-c.x)*(b.y-c

POJ 2007 Scrambled Polygon(凸包)

Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7568   Accepted: 3604 Description A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the

POJ 2007 Scrambled Polygon(计算几何 叉积排序啊)

题目链接:http://poj.org/problem?id=2007 Description A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the vertices of the polygon. When one starts at any vertex of a close

POJ 2007 Scrambled Polygon

虽然A了但是完全不懂这题在干什么. #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #define maxn 105 using namespace std; struct point { int x,y; point (int x,int y):x(x),y(y) {} point () {} friend point operator - (point x

Scrambled Polygon(差集排序)

Scrambled Polygon Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7799   Accepted: 3707 Description A closed polygon is a figure bounded by a finite number of line segments. The intersections of the bounding line segments are called the