bfprt算法及其相关
找到无序数组中最小的K个数
【题目】
给定一个无序的整型数组arr,找到其中最小的k个数。
【要求】
如果数组arr的长度为N,排序之后自然可以得到最小的k个数,此时时间复杂度为排序的时间复杂度即O(N*logN)。本题要求读者实现时间复杂度O(N*logK)和O(N)的方法。
利用堆:
public int[] getMinKNumsByHeap(int[] arr, int k) {
if (k < 1 || k > arr.length) {
return arr;
}
int[] kHeap = new int[k];
for (int i = 0; i != k; i++) {
heapInsert(kHeap, arr[i], i);
}
for (int i = k; i != arr.length; i++) {
if (arr[i] < kHeap[0]) {
kHeap[0] = arr[i];
heapify(kHeap, 0, k);
}
}
return kHeap;
}
public void heapInsert(int[] arr, int value, int index) {
arr[index] = value;
while (index != 0) {
int parent = (index - 1) / 2;
if (arr[parent] < arr[index]) {
swap(arr, parent, index);
index = parent;
} else {
break;
}
}
}
public void heapify(int[] arr, int index, int heapSize) {
int left = index * 2 + 1;
int right = index * 2 + 2;
int largest = index;
while (left < heapSize) {
if (arr[left] > arr[index]) {
largest = left;
}
if (right < heapSize && arr[right] > arr[largest]) {
largest = right;
}
if (largest != index) {
swap(arr, largest, index);
} else {
break;
}
index = largest;
left = index * 2 + 1;
right = index * 2 + 2;
}
}
public void swap(int[] arr, int index1, int index2) {
int tmp = arr[index1];
arr[index1] = arr[index2];
arr[index2] = tmp;
}
利用bfprt算法:
public int[] getMinKNumsByBFPRT(int[] arr, int k) {
if (k < 1 || k > arr.length) {
return arr;
}
int minKth = getMinKthByBFPRT(arr, k);
int[] res = new int[k];
int index = 0;
for (int i = 0; i != arr.length; i++) {
if (arr[i] < minKth) {
res[index++] = arr[i];
}
}
for (; index != res.length; index++) {
res[index] = minKth;
}
return res;
}
public int getMinKthByBFPRT(int[] arr, int K) {
int[] copyArr = copyArray(arr);
return select(copyArr, 0, copyArr.length - 1, K - 1);
}
public int[] copyArray(int[] arr) {
int[] res = new int[arr.length];
for (int i = 0; i != res.length; i++) {
res[i] = arr[i];
}
return res;
}
public int select(int[] arr, int begin, int end, int i) {
if (begin == end) {
return arr[begin];
}
int pivot = medianOfMedians(arr, begin, end);
int[] pivotRange = partition(arr, begin, end, pivot);
if (i >= pivotRange[0] && i <= pivotRange[1]) {
return arr[i];
} else if (i < pivotRange[0]) {
return select(arr, begin, pivotRange[0] - 1, i);
} else {
return select(arr, pivotRange[1] + 1, end, i);
}
}
public int medianOfMedians(int[] arr, int begin, int end) {
int num = end - begin + 1;
int offset = num % 5 == 0 ? 0 : 1;
int[] mArr = new int[num / 5 + offset];
for (int i = 0; i < mArr.length; i++) {
int beginI = begin + i * 5;
int endI = beginI + 4;
mArr[i] = getMedian(arr, beginI, Math.min(end, endI));
}
return select(mArr, 0, mArr.length - 1, mArr.length / 2);
}
public int[] partition(int[] arr, int begin, int end, int pivotValue) {
int small = begin - 1;
int cur = begin;
int big = end + 1;
while (cur != big) {
if (arr[cur] < pivotValue) {
swap(arr, ++small, cur++);
} else if (arr[cur] > pivotValue) {
swap(arr, cur, --big);
} else {
cur++;
}
}
int[] range = new int[2];
range[0] = small + 1;
range[1] = big - 1;
return range;
}
public int getMedian(int[] arr, int begin, int end) {
insertionSort(arr, begin, end);
int sum = end + begin;
int mid = (sum / 2) + (sum % 2);
return arr[mid];
}
public void insertionSort(int[] arr, int begin, int end) {
for (int i = begin + 1; i != end + 1; i++) {
for (int j = i; j != begin; j--) {
if (arr[j - 1] > arr[j]) {
swap(arr, j - 1, j);
} else {
break;
}
}
}
}
public void swap(int[] arr, int index1, int index2) {
int tmp = arr[index1];
arr[index1] = arr[index2];
arr[index2] = tmp;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。