Mmap的实现原理和应用

http://blog.csdn.net/edwardlulinux/article/details/8604400

很多文章分析了mmap的实现原理。从代码的逻辑来分析,总是觉没有把mmap后读写映射区域和普通的read/write联系起来。不得不产生疑问:

1,普通的read/write和mmap后的映射区域的读写到底有什么区别。

2, 为什么有时候会选择mmap而放弃普通的read/write。

3,如果文章中的内容有不对是或者是不妥的地方,欢迎大家指正。

围绕着这两个问题分析一下,其实在考虑这些问题的同时不免和其他的很多系统机制产生交互。虽然是讲解mmap,但是很多知识还是为了阐明问题做必要的铺垫。这些知识也正是linux的繁琐所在。一个应用往往和系统中的多种机制交互。这篇文章中尽量减少对源代码的引用和分析。把这样的工作留到以后的细节分析中。但是很多分析的理论依据还是来自于源代码。可见源代码的重要地位。

基础知识:

1, 进程每次切换后,都会在tlb base寄存器中重新load属于每一个进程自己的地址转换基地址。在cpu当前运行的进程中都会有current宏来表示当前的进程的信息。应为这个代码实现涉及到硬件架构的问题,为了避免差异的存在在文章中用到硬件知识的时候还是指明是x86的架构,毕竟x86的资料和分析的研究人员也比较多。其实arm还有其他类似的RISC的芯片,只要有mmu支持的,都会有类似的基地址寄存器。

2, 在系统运行进程之前都会为每一个进程分配属于它自己的运行空间。并且这个空间的有效性依赖于tlb base中的内容。32位的系统中访问的空间大小为4G。在这个空间中进程是“自由”的。所谓“自由”不是说对于4G的任何一个地址或者一段空间都可以访问。如果要访问,还是要遵循地址有效性,就是tlb base中所指向的任何页表转换后的物理地址。其中的有效性有越界,权限等等检查。

3, 任何一个用户进程的运行在系统分配的空间中。这个空间可以有

vma:struct vm_area_struct来表示。所有的运行空间可以有这个结构体描述。用户进程可以分为text data 段。这些段的具体在4G中的位置有不同的vma来描述。Vma的管理又有其他机制保证,这些机制涉及到了算法和物理内存管理等。请看一下两个图片:

图 一:

图 二:

系统调用中的write和read:

这里没有指定确切的文件系统类型作为分析的对象。找到系统调用号,然后确定具体的文件系统所带的file operation。在特定的file operation中有属于每一种文件系统自己的操作函数集合。其中就有read和write。

图 三:

在真正的把用户数据读写到磁盘或者是存储设备前,内核还会在page cache中管理这些数据。这些page的存在有效的管理了用户数据和读写的效率。用户数据不是直接来自于应用层,读(read)或者是写入(write)磁盘和存储介质,而是被一层一层的应用所划分,在每一层次中都会有不同的功能对应。最后发生交互时,在最恰当的时机触发磁盘的操作。通过IO驱动写入磁盘和存储介质。这里主要强调page cache的管理。应为page的管理设计到了缓存,这些缓存以page的单位管理。在没有IO操作之前,暂时存放在系统空间中,而并未直接写入磁盘或者存贮介质。

系统调用中的mmap:

当创建一个或者切换一个进程的同时,会把属于这个当前进程的系统信息载入。这些系统信息中包含了当前进程的运行空间。当用户程序调用mmap后。函数会在当前进程的空间中找到适合的vma来描述自己将要映射的区域。这个区域的作用就是将mmap函数中文件描述符所指向的具体文件中内容映射过来。

原理是:mmap的执行,仅仅是在内核中建立了文件与虚拟内存空间的对应关系。用户访问这些虚拟内存空间时,页面表里面是没有这些空间的表项的。当用户程序试图访问这些映射的空间时,于是产生缺页异常。内核捕捉这些异常,逐渐将文件载入。所谓的载入过程,具体的操作就是read和write在管理pagecache。Vma的结构体中有很文件操作集。vma操作集中会有自己关于page cache的操作集合。这样,虽然是两种不同的系统调用,由于操作和调用触发的路径不同。但是最后还是落实到了page cache的管理。实现了文件内容的操作。

Ps:

文件的page cache管理也是很好的内容。涉及到了address space的操作。其中很多的内容和文件操作相关。

效率对比:

这里应用了网上一篇文章。发现较好的分析,着这里引用一下。

Mmap:

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <unistd.h>

#include <sys/mman.h>

void main()

{

int fd = open("test.file", 0);

struct stat statbuf;

char *start;

char buf[2] = {0};

int ret = 0;

fstat(fd, &statbuf);

start = mmap(NULL, statbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0);

do {

*buf = start[ret++];

}while(ret < statbuf.st_size);

}

Read:

#include <stdio.h>

#include <stdlib.h>

void main()

{

FILE *pf = fopen("test.file", "r");

char buf[2] = {0};

int ret = 0;

do {

ret = fread(buf, 1, 1, pf);

}while(ret);

}

运行结果:

[[email protected] test_read]$ time ./fread

real    0m0.901s

user    0m0.892s

sys     0m0.010s

[[email protected] test_read]$ time ./mmap

real    0m0.112s

user    0m0.106s

sys     0m0.006s

[[email protected] test_read]$ time ./read

real    0m15.549s

user    0m3.933s

sys     0m11.566s

[[email protected] test_read]$ ll test.file

-rw-r--r-- 1 xiangy svx8004 23955531 Sep 24 17:17 test.file

可以看出使用mmap后发现,系统调用所消耗的时间远远比普通的read少很多

时间: 2024-07-31 04:07:59

Mmap的实现原理和应用的相关文章

认真分析mmap:是什么 为什么 怎么用

mmap基础概念 mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系.实现这样的映射关系后,进程就可以采用指针的方式读写操作这一段内存,而系统会自动回写脏页面到对应的文件磁盘上,即完成了对文件的操作而不必再调用read,write等系统调用函数.相反,内核空间对这段区域的修改也直接反映用户空间,从而可以实现不同进程间的文件共享.如下图所示: 由上图可以看出,进程的虚拟地址空间,由多个虚拟内存区域构成.虚拟

Android Binder设计原理

人类社会进步的根源力量是那些头脑卓越的天才,大至推动社会革新的发明创造,微至影响某一行业发展方向的技术创造,比如Android操作系统,小部分天才的发明创造(android系统的核心设计者),才有无数为之修边幅的工作机会,此篇不敢妄谈android太多内容,只将本人对android系统设计中一个巧妙无比的binder机制的浅薄认知做一个分析: 涉及的要义: A)Binder IPC B)Binder通信模型 C)Android为何引入Binder A)Binder IPC Binder机制符合C

认真分析mmap:是什么 为什么 怎么用【转】

mmap基础概念 mmap是一种内存映射文件的方法,即将一个文件或者其它对象映射到进程的地址空间,实现文件磁盘地址和进程虚拟地址空间中一段虚拟地址的一一对映关系.实现这样的映射关系后,进程就可以采用指针的方式读写操作这一段内存,而系统会自动回写脏页面到对应的文件磁盘上,即完成了对文件的操作而不必再调用read,write等系统调用函数.相反,内核空间对这段区域的修改也直接反映用户空间,从而可以实现不同进程间的文件共享.如下图所示: 由上图可以看出,进程的虚拟地址空间,由多个虚拟内存区域构成.虚拟

Java网络编程和NIO详解8:浅析mmap和Direct Buffer

Java网络编程与NIO详解8:浅析mmap和Direct Buffer 本系列文章首发于我的个人博客:https://h2pl.github.io/ 欢迎阅览我的CSDN专栏:Java网络编程和NIO https://blog.csdn.net/column/details/21963.html 部分代码会放在我的的Github:https://github.com/h2pl/ Java网络编程与NIO详解8:浅析mmap和Direct Buffer 之前看到一篇文章说epoll中在维护epo

优秀的 Android 开源项目

摘要  转载http://www.trinea.cn/android/android-open-source-projects-view/,方便大家找到自己合适的资料 目录[-] 一.ListView 二.ActionBar 三.Menu 四.ViewPager .Gallery 五.GridView 六.ImageView 七.ProgressBar 八.其他 GitHub上优秀Android开源项目 3. Android开发神器 1.Xabber客户端 2.oschina客户端 3.手机安全

linux驱动面试题整理

资料来自网上,简单整理,答案后续补充...... 1.字符型驱动设备你是怎么创建设备文件的,就是/dev/下面的设备文件,供上层应用程序打开使用的文件? 答:mknod命令结合设备的主设备号和次设备号,可创建一个设备文件. 评:这只是其中一种方式,也叫手动创建设备文件.还有UDEV/MDEV自动创建设备文件的方式,UDEV/MDEV是运行在用户态的程序,可以动态管理设备文件,包括创建和删除设备文件,运行在用户态意味着系统要运行之后.那么在系统启动期间还有devfs创建了设备文件.一共有三种方式可

Linux 驱动面试题总结

1. Linux设备中字符设备与块设备有什么主要的区别?请分别列举一些实际的设备说出它们是属于哪一类设备. 字符设备:字符设备是个能够像字节流(类似文件)一样被访问的设备,由字符设备驱动程序来实现这种特性.字符设备驱动程序通常至少实现open,close,read和write系统调用.字符终端.串口.鼠标.键盘.摄像头.声卡和显卡等就是典型的字符设备. 块设备:和字符设备类似,块设备也是通过/dev目录下的文件系统节点来访问.块设备上能够容纳文件系统,如:u盘,SD卡,磁盘等. 字符设备和块设备

Linphone学习之 Oss

1.OSS简介 OSS的层次结构非常简单,应用程序通过API(定义于 )访问OSS driver,OSS driver控制声卡.如下图所示: oss结构 声卡中主要有两个基本装置:Mixer和CODEC(ADC/DAC).Mixer用来控制输入音量的大小,对应的设备文件为/dev /mixer:CODEC用来实现录音(模拟信号转变为数字信号)和播放声音(数字信号转变为模拟信号)的功能,对应的设备文件为/dev/dsp. 开发OSS应用程序的一般流程是: 1)包含OSS头文件:#include 2

驱动笔试题目整理

1. Linux设备中字符设备与块设备有什么主要的区别?请分别列举一些实际的设备说出它们是属于哪一类设备. 字符设备:字符设备是个能够像字节流(类似文件)一样被访问的设备,由字符设备驱动程序来实现这种特性.字符设备驱动程序通常至少实现open,close,read和write系统调用.字符终端.串口.鼠标.键盘.摄像头.声卡和显卡等就是典型的字符设备. 块设备:和字符设备类似,块设备也是通过/dev目录下的文件系统节点来访问.块设备上能够容纳文件系统,如:u盘,SD卡,磁盘等. 字符设备和块设备