bzoj 3437 斜率优化DP

  写题解之前首先要感谢妹子。

  比较容易的斜率DP,设sum[i]=Σb[j],sum_[i]=Σb[j]*j,w[i]为第i个建立,前i个的代价。

  那么就可以转移了。

  备注:还是要感谢妹子。


/**************************************************************
Problem: 3437
User: BLADEVIL
Language: C++
Result: Accepted
Time:3404 ms
Memory:39872 kb
****************************************************************/

//By BLADEVIL
#include <cstdio>
#define maxn 1000010
#define LL long long

using namespace std;

LL n;
LL a[maxn],sum[maxn],sum_[maxn];
LL que[maxn];
LL w[maxn];

LL get(LL i) {
return (w[i]+sum_[i]);
}

int main() {
scanf("%lld",&n);
for (LL i=1;i<=n;i++) scanf("%lld",&a[i]);
for (LL i=1;i<=n;i++) scanf("%lld",&sum[i]);
for (LL i=1;i<=n;i++) sum_[i]=i*sum[i];
for (LL i=1;i<=n;i++) sum[i]+=sum[i-1],sum_[i]+=sum_[i-1];
LL h(1),t(1);
for (LL i=1;i<=n;i++) {
while ((t-h>0)&&((sum[que[h]]-sum[que[h+1]])*i<=(w[que[h]]+sum_[que[h]]-w[que[h+1]]-sum_[que[h+1]]))) h++;
w[i]=w[que[h]]+(sum[i]-sum[que[h]])*i-(sum_[i]-sum_[que[h]])+a[i];
//w[i]=w[que[h]]+sum_[que[h]]-i*sum[que[h]]+i*sum[i]+a[i]-sum_[i];
while ((t>h)&&((get(que[t-1])-get(i))*(sum[que[t-1]]-sum[que[t]])<=(get(que[t-1])-get(que[t]))*(sum[que[t-1]]-sum[i]))) t--;
/*
while ((t-h>0)&&(
(w[que[t-1]]+sum_[que[t-1]]-w[i]-sum_[i])*(sum[que[t-1]]-sum[que[t]])<=
(w[que[t-1]]+sum_[que[t-1]]-w[que[t]]-sum_[que[t]])*(sum[que[t-1]]-sum[i]))
) t--;
*/
que[++t]=i;
}
printf("%lld\n",w[n]);
return 0;
}

bzoj 3437 斜率优化DP

时间: 2024-11-03 03:41:31

bzoj 3437 斜率优化DP的相关文章

bzoj 1010 斜率优化DP

我的第二道斜率DP. 收获: 1.假设两个位置:p<q<i,然后让某一位置优,看其满足什么性质,所谓斜率优化就是满足: (g[q]-g[p])/(f[q]-f[p])  op h[i] 要化简成这样,必须满足f函数关于位置单调,否则op(<或>)的方向就会因为f的大小关系而变化,就没有凸的性质了. 2.斜率优化很难调试,所以当发现暴力DP和同样的方程被斜率优化了一下的答案不同时,不要去调试,直接去检查上面的各个函数是否写错或抄到代码中抄错了, 或者重推一遍.(注意决策点是否可能会重

[bzoj 1911][Apio 2010]特别行动队(斜率优化DP)

题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1911 分析: 首先可以的到裸的方程f[i]=max{f[j]+a*(Si-Sj)^2+b*(Si-Sj)+c} 0<j<i 简化一下方程,我们知道对于一次项,最后结果肯定是b*Sn 所以可以写成f[i]=max{f[j]+a*(Si-Sj)^2+c} 0<j<i 我们不妨设0<x<y<i,且x比y优 即f[x]+a*(Si-Sx)^2+c>f[y]+a*

BZOJ 1096 [ZJOI2007]仓库建设 斜率优化dp

1096: [ZJOI2007]仓库建设 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php?id=1096 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L先生接到气象部门的电话,被告知三天之后将有一场

BZOJ 3156: 防御准备 斜率优化DP

3156: 防御准备 Description Input 第一行为一个整数N表示战线的总长度. 第二行N个整数,第i个整数表示在位置i放置守卫塔的花费Ai. Output 共一个整数,表示最小的战线花费值. Sample Input 10 2 3 1 5 4 5 6 3 1 2 Sample Output 18 HINT 1<=N<=10^6,1<=Ai<=10^9 题解: 斜率优化DP: 首先将数组倒置 设定dp[i] 为前i的点的最优答案 易得 dp[i] = min{dp[j

BZOJ 1096 ZJOI2007 仓库设计 斜率优化dp

太高兴了,这是我第一次自己独立思考的斜率优化dp,从头到尾都是自己想的.(相信自己,能行的,不过也做了40分钟了). 这道题目还好吧! 看到之后第一反应是想设从工厂0运到工厂i 总共需要 tot[i] 的费用, 用 p[i] 表示从山顶到工厂 i 总共的产品数, 再用 x[i] 表示从工厂0到工厂 i 的距离, 那么状态转移方程就是 f[i] = min{f[j] + tot[i] - tot[j] - p[j] * (x[i] - x[j] ) + c[i] } ,很明显由于数据有 n <=

BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1...N的N件玩具,第i件玩具经过压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的.同时如果一个一维容器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一个容器中,那么容器

BZOJ 3675 APIO2014 序列切割 斜率优化DP

题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了.就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i个的最大得分. 那么会推出来f[i][j]=max(f[k][j?1]+sum[i k]?sum[1 k?1]或(sum[k i]?sum[i+1 n]))然后我发现这个式子的复杂度非常高暂且不说.就光那个或的讨论就非常费劲. 于是想了想就放弃了这个念头.中规中矩的去想. 依照以往的思路设出状态f[

BZOJ 3675 APIO2014 序列分割 斜率优化DP

题意:链接 方法:斜率优化DP 解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了,就是过不了BZ. 看到这道题自己第一发DP是这么推得: 设f[i][j]是第j次分第i个的最大得分. 那么会推出来f[i][j]=max(f[k][j?1]+sum[i k]?sum[1 k?1]或(sum[k i]?sum[i+1 n]))然后我发现这个式子的复杂度很高暂且不说,就光那个或的讨论就很费劲. 于是想了想就放弃了这个念头,中规中矩的去想. 按照以往的思路设出状态f[i]

bzoj 1597 [Usaco2008 Mar]土地购买——斜率优化dp

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1597 又一道斜率优化dp.负数让我混乱.不过仔细想想还是好的. 还可以方便地把那个负号放到x上.只要改一下slope里的一个负号,就变成正常舒服的递增了. 这道题的要点其实是一开始h=0.不能h=1.这样就能把dp[0]纳入考虑.这是需要的. #include<iostream> #include<cstdio> #include<cstring> #includ