Key Set
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 1886 Accepted Submission(s): 990
Problem Description
soda has a set S with n integers {1,2,…,n}.
A set is called key set if the sum of integers in the set is an even number. He wants to know how many nonempty subsets of S are
key set.
Input
There are multiple test cases. The first line of input contains an integer T (1≤T≤105),
indicating the number of test cases. For each test case:
The first line contains an integer n (1≤n≤109),
the number of integers in the set.
Output
For each test case, output the number of key sets modulo 1000000007.
Sample Input
4 1 2 3 4
Sample Output
0 1 3 7
Author
[email protected]
Source
2015 Multi-University Training Contest 6
Recommend
wange2014
原题链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=5363
题意:给你一个具有n个元素的集合S{1,2,…,n},问集合S的非空子集中元素和为偶数的非空子集有多少个。
以下转自:http://blog.csdn.net/queuelovestack/article/details/47321795
放入出题人的解题报告
解题思路:因为集合S中的元素是从1开始的连续的自然数,所以所有元素中奇数个数与偶数个数相同,或比偶数多一个。另外我们要知道偶数+偶数=偶数,奇数+奇数=偶数,假设现在有a个偶数,b个奇数,则
根据二项式展开公式
以及二项式展开式中奇数项系数之和等于偶数项系数之和的定理
可以得到上式
最后的结果还需减去
即空集的情况,因为题目要求非空子集
所以最终结果为
由于n很大,所以计算n次方的时候需要用到快速幂,不然会TLE
找到规律那就快速幂取模吧。
AC代码:
#include <iostream> #include <cstdio> using namespace std; const int mod=1000000007; typedef long long LL; LL quick_mod(int a,int b) { // a^b%mod LL ans=1; LL t=a%mod; while(b) { if(b&1) ans=ans*t%mod; t=t*t%mod; b>>=1; } return ans; } int main() { int T; cin>>T; LL n; while(T--) { cin>>n; cout<<quick_mod(2,n-1)-1<<endl; } return 0; }