小结:矩阵乘法

概要:

在一些递推式中,我们发现好像不能在优化了(例如斐波那契数列普通递推是O(n)的),但是这个特殊的递推式我们可以用矩阵来实现O(logn)(忽略了矩阵自身计算的O(n^3))。而矩阵乘法运算是a[i, k]*b[k, j]=c[i, j],从这个式子可看出朴素是n^3的(当然那些神算法我不会),而fib数列递推式可以用矩阵乘法来表示,即

         ┏ 1,1 ┓
[f(n-1), f(n-2)]*┃        ┃=[f(n), f(n-1)]
         ┗ 1, 0 ┛

而矩阵乘法是可以做快速幂的!也就是说矩阵A[i,j]^n可以像快速幂一样计算!这样logn就出来了。

技巧及注意:

注意一定不要搞错位置!因为矩阵乘法中A*B和B*A的概念完全不同,所以在调用自己写的矩阵幂时一定不要搞错顺序!

在一些递推式中我们要好好想想有没有能用一个矩阵来描述我们的递推式的,然后就可以写了。(显然让你求一个数列的n次幂,而n<=10^18啥的数据,显然是矩阵)

在一些没一行都是根据上一行的某种规律转移的,我们可以考虑缩小它的矩阵表示,使得复杂度进一步减小,例如【POJ】3150 Cellular Automaton(矩阵乘法+特殊的技巧)中,就是运用了原矩阵中每行都是由前一行向右移一位得到的这个性质,然后将n*n的矩阵缩到n,这样只需要计算一行的就能推出其它行的,那么复杂度降到了n^2。

时间: 2024-12-27 10:26:55

小结:矩阵乘法的相关文章

矩阵乘法的Strassen算法详解

题目描述 请编程实现矩阵乘法,并考虑当矩阵规模较大时的优化方法. 思路分析 根据wikipedia上的介绍:两个矩阵的乘法仅当第一个矩阵B的列数和另一个矩阵A的行数相等时才能定义.如A是m×n矩阵和B是n×p矩阵,它们的乘积AB是一个m×p矩阵,它的一个元素其中 1 ≤ i ≤ m, 1 ≤ j ≤ p. 值得一提的是,矩阵乘法满足结合律和分配率,但并不满足交换律,如下图所示的这个例子,两个矩阵交换相乘后,结果变了: 下面咱们来具体解决这个矩阵相乘的问题. 解法一.暴力解法 其实,通过前面的分析

基于OpenMP的矩阵乘法实现及效率提升分析

一.  矩阵乘法串行实现 例子选择两个1024*1024的矩阵相乘,根据矩阵乘法运算得到运算结果.其中,两个矩阵中的数为double类型,初值由随机数函数产生.代码如下: #include <iostream> #include <omp.h> // OpenMP编程需要包含的头文件 #include <time.h> #include <stdlib.h> using namespace std; #define MatrixOrder 1024 #def

百道Python入门级练习题(新手友好)第一回合——矩阵乘法

题目描述 [问题描述] 编写程序,完成3*4矩阵和4*3整数矩阵的乘法,输出结果矩阵. [输入形式] 一行,供24个整数.以先行后列顺序输入第一个矩阵,而后输入第二个矩阵. [输出形式] 先行后列顺序输出结果矩阵,每个元素的显示宽度为8格,屏幕一行只显示矩阵的一行. [样例输入] 1 2 3 4 5 6 7 8 9 1 2 3 9 8 7 6 5 4 3 2 1 1 2 3 上面的输入,意味着要计算如下两个矩阵的乘积. 第一个矩阵 : 1 2 3 4 5 6 7 8 9 1 2 3 第二个矩阵:

没涉及到最值求解;观点:矩阵乘法无法表达出结果。 现实生活中事件、现象的数学表达

小结: 1. 矩阵就是一张普通的数表 矩阵乘法它表达的是一件具体的有现实生活场景的事件:但是不能借助它表达所有的事件. 它能,可能是只能,表达的是这个事件是通过列元素和行元素的相乘,而不能在拆分为单独的两个2行-列元素: 事件的原子不是某个行/列元素,而是一行/列元素. 3个菜市场卖着不同价格的白菜.萝卜.土豆:求总采购支出:采购量矩阵*价格矩阵 3个菜市场卖着不同价格的白菜.萝卜.土豆,现在在总采购支出计入运费,而不同的菜市场不同蔬菜的单位重量运费为价格的不同倍:例如第一个菜市场的白菜.萝卜.

51nod 1137 矩阵乘法

基本的矩阵乘法 中间for(int j=0;i<n;i++)  //这里写错了   应该是j<n 晚上果然  效率不行 等会早点儿睡 //矩阵乘法 就是 两个矩阵 第一个矩阵的列 等与 第二个矩阵的行相同 // 然后ans[i][j] += a[i][k] * b[k][j]; #include<bits/stdc++.h> using namespace std; typedef long long ll; const int maxn = 150; int n; ll a[ma

矩阵乘法

矩阵加法就是相同位置的数字加一下,矩阵减法也类似 矩阵乘以一个常数,就是所有位置都乘以这个数 矩阵乘以矩阵 计算规则是,第一个矩阵第一行的每个数字(2和1),各自乘以第二个矩阵第一列对应位置的数字(1和1),然后将乘积相加( 2 x 1 + 1 x 1),得到结果矩阵左上角的那个值3 矩阵的本质就是线性方程式,两者是一一对应关系.如果从线性方程式的角度,理解矩阵乘法就毫无难度.下面是一组线性方程式 矩阵的最初目的,只是为线性方程组提供一个简写形式 下面是严格的证明.有三组未知数 x.y 和 t,

矩阵乘法&lt;简单总结&gt;

原理:矩阵相乘最重要的方法是一般矩阵乘积.它只有在第一个矩阵的 行数 和第二个矩阵的 列数 相同时才可进行.若A为m×n矩阵,B为n×p矩阵,则他们的乘积AB会是一个m×p矩阵. 若A=    a    b    c        d    e    f        g    h    i    B=    A    D        B    E        C    F    A*B=CC=    aA+bB+cC    aD+bE+cF        dA+eB+fC    dD+eE

POJ2778 DNA Sequence Trie+矩阵乘法

题意:给定N个有A C G T组成的字符串,求长度为L的仅由A C G T组成的字符串中有多少个是不含给定的N个字符串的题解: 首先我们把所有的模式串(给定的DNA序列)建Trie,假定我们有一个匹配串,并且在匹配过程到S[i]这个字符时匹配到了Trie上的某个节点t,那么有两种可能: 匹配失败:t->child[S[i]]为空,跳转到t->fail,因此t->fail一定不能是某个模式串的结尾: 匹配成功:跳转到t->child[S[i+1]],因此t->child[S[i

【CDQ】BZOJ 2738 矩阵乘法

题意:给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数 思路: 整体二分+二维树状数组 二分询问的答案mid,将数值小等mid的全部插入二维树状数组 然后查询每个矩阵内的元素个数,若数量>K-1则放左边,否则放右边 继续向下分治,左边二分l-mid,右边mid-r 代码: #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include