链式--前向星算法(转载学习)*重点*【模板】

转载地址:http://blog.csdn.net/acdreamers/article/details/16902023

我们首先来看一下什么是前向星.


前向星是一种特殊的边集数组,我们把边集数组中的每一条边按照起点从小到大排序,如果起点相同就按照终点从小到大排序,

并记录下以某个点为起点的所有边在数组中的起始位置和存储长度,那么前向星就构造好了.


用len[i]来记录所有以i为起点的边在数组中的存储长度.

用head[i]记录以i为边集在数组中的第一个存储位置.


那么对于下图:





我们输入边的顺序为:


1 2

2 3

3 4

1 3

4 1

1 5

4 5


那么排完序后就得到:


编号:     1      2      3      4      5      6      7

起点u:    1      1      1      2      3      4      4

终点v:    2      3      5      3      4      1      5


得到:


head[1] = 1    len[1] = 3

head[2] = 4    len[2] = 1

head[3] = 5    len[3] = 1

head[4] = 6    len[4] = 2


但是利用前向星会有排序操作,如果用快排时间至少为O(nlog(n))



如果用链式前向星,就可以避免排序.


我们建立边结构体为:


struct Edge

{

     int next;

     int to;

     int w;

};


其中edge[i].to表示第i条边的终点,edge[i].next表示与第i条边同起点的下一条边的存储位置,edge[i].w为边权值.


另外还有一个数组head[],它是用来表示以i为起点的第一条边存储的位置,实际上你会发现这里的第一条边存储的位置其实

在以i为起点的所有边的最后输入的那个编号.


head[]数组一般初始化为-1,对于加边的add函数是这样的:


[cpp] view plaincopy

  1. void add(int u,int v,int w)
  2. {
  3. edge[cnt].w = w;
  4. edge[cnt].to = v;
  5. edge[cnt].next = head[u];
  6. head[u] = cnt++;
  7. }

初始化cnt = 0,这样,现在我们还是按照上面的图和输入来模拟一下:


edge[0].to = 2;     edge[0].next = -1;      head[1] = 0;

edge[1].to = 3;     edge[1].next = -1;      head[2] = 1;

edge[2].to = 4;     edge[2],next = -1;      head[3] = 2;

edge[3].to = 3;     edge[3].next = 0;       head[1] = 3;

edge[4].to = 1;     edge[4].next = -1;      head[4] = 4;

edge[5].to = 5;     edge[5].next = 3;       head[1] = 5;

edge[6].to = 5;     edge[6].next = 4;       head[4] = 6;


很明显,head[i]保存的是以i为起点的所有边中编号最大的那个,而把这个当作顶点i的第一条起始边的位置.


这样在遍历时是倒着遍历的,也就是说与输入顺序是相反的,不过这样不影响结果的正确性.

比如以上图为例,以节点1为起点的边有3条,它们的编号分别是0,3,5   而head[1] = 5


我们在遍历以u节点为起始位置的所有边的时候是这样的:


for(int i=head[u];~i;i=edge[i].next)


那么就是说先遍历编号为5的边,也就是head[1],然后就是edge[5].next,也就是编号3的边,然后继续edge[3].next,也

就是编号0的边,可以看出是逆序的.

时间: 2024-10-10 22:20:32

链式--前向星算法(转载学习)*重点*【模板】的相关文章

单元最短路径算法模板汇总(Dijkstra, BF,SPFA),附链式前向星模板

一:dijkstra算法时间复杂度,用优先级队列优化的话,O((M+N)logN)求单源最短路径,要求所有边的权值非负.若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的. 设road[i][j]表示相邻的i到j的路长U集合存储已经求得的到源点最短路径的节点,S集合表示还没求得的节点dis[i]表示i到源节点(设为0)的最短路径vis[i]=1表示i节点在U集合中 刚开始dis[0]=0,vis[0]=1;dis[i]=maxn,vis[i]=0;for 1 to

最短路 spfa 算法 && 链式前向星存图

推荐博客  https://i.cnblogs.com/EditPosts.aspx?opt=1 http://blog.csdn.net/mcdonnell_douglas/article/details/54379641 spfa  自行百度 说的很详细 spfa 有很多实现的方法  dfs  队列  栈  都可以 时间复杂度也不稳定 不过一般情况下要比bellman快得多 #include <stdio.h> #include <math.h> #include <st

链式前向星-学习笔记

模板: 数据结构: int head[LEN]; //记录源点u在mp中第一个地址i=head[u] 调用完之后就可以用mp[i]访问边表mp int cnt=0; //边表下标,随着数据的录入而扩张 struct edge{ //边 int to,next,w; }; edge mp[LEN]; //边表 加边函数: void add(int u,int v,int w){ //增加边 mp[cnt].to=v; mp[cnt].w=w; mp[cnt].next=head[u]; //指向源

poj-1459-最大流dinic+链式前向星

title: poj-1459-最大流dinic+链式前向星 date: 2018-11-22 20:57:54 tags: acm 刷题 categories: ACM-网络流-最大流 概述 这道是一道网络流里最大流的板子题,,, 暑期集训网络流草草水过,,连基本的算法都不知道有哪些,,,更别提怎么实现了,,,只知道网络流的大致的概念,, 今天花了一天的时间重新学习了一波,,,本以为这东西很简单,,,没想到不仅算法的实现一大堆的东西,,就连题目都有时候看不懂,,,,感受就是网络流的题不仅算法实

UESTC30-最短路-Floyd最短路、spfa+链式前向星建图

最短路 Time Limit: 3000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) 在每年的校赛里,所有进入决赛的同学都会获得一件很漂亮的T-shirt.但是每当我们的工作人员把上百件的衣服从商店运回到赛场的时候,却是非常累的!所以现在他们想要寻找最短的从商店到赛场的路线,你可以帮助他们吗? Input 输入包括多组数据. 每组数据第一行是两个整数NN ,MM (N≤100N≤100 ,M≤10000M≤1000

前向星和链式前向星

前向星和链式前向星 1.前向星 前向星是以存储边的方式来存储图,先将边读入并存储在连续的数组中,然后按照边的起点进行排序,这样数组中起点相等的边就能够在数组中进行连续访问了.它的优点是实现简单,容易理解,缺点是需要在所有边都读入完毕的情况下对所有边进行一次排序,带来了时间开销,实用性也较差,只适合离线算法.图一-2-4展示了图一-2-1的前向星表示法. 2.链式前向星(就是数组模拟链表) 链式前向星和邻接表类似,也是链式结构和线性结构的结合,每个结点i都有一个链表,链表的所有数据是从i出发的所有

NYOJ 20 吝啬的国度 【BFS+链式前向星建图,Vector建图】

吝啬的国度 时间限制:1000 ms  |  内存限制:65535 KB 难度:3 描述 在一个吝啬的国度里有N个城市,这N个城市间只有N-1条路把这个N个城市连接起来.现在,Tom在第S号城市,他有张该国地图,他想知道如果自己要去参观第T号城市,必须经过的前一个城市是几号城市(假设你不走重复的路). 输入 第一行输入一个整数M表示测试数据共有M(1<=M<=5)组 每组测试数据的第一行输入一个正整数N(1<=N<=100000)和一个正整数S(1<=S<=100000

图的存储:链式前向星(边集数组)

申明:本文中提及的所有存图结构都用静态数组实现,而非链表. 0.什么是链式前向星 链式前向星是一种存图的结构,例如前向星.邻接矩阵.边表.邻接表等也是存图的结构. 1.链式前向星有何优点 链式前向星:空间利用率高,在各类竞赛中常被使用. 邻接矩阵:需要开N*N的空间,在各类竞赛中常被卡. 邻接表:空间复杂度略小于邻接矩阵,但会被极端数据卡爆,且无法记录权值. 边表:无法迅速判断两点连通性,以至不适用于大多数图的算法. 前向星:具有排序操作,时间复杂度高. 2.同类结构介绍 邻接矩阵:开二维数组,

【最短路】Dijkstra+ 链式前向星+ 堆优化(优先队列)

Dijkstra+ 链式前向星+ 优先队列   Dijkstra算法 Dijkstra最短路算法,个人理解其本质就是一种广度优先搜索.先将所有点的最短距离Dis[ ]都刷新成∞(涂成黑色),然后从起点x (Dis[x]= 0, Dis[]值最小 )开始查询:先将x 加入(涂成灰色),对x 的所有边进行遍历,对所有搜索到的点x+ 1 进行松弛(刷新),若经过x 点的松弛,得到的距离小于原来的值:Dis[x]+ dis(x, x+ 1) < Dis[x+ 1], 则用新值刷新,把x+ 1加入(涂成灰