二分查找算法的递归、循环实现及其缺陷

关于二分查找法

在学习算法的过程中,我们除了要了解某个算法的基本原理、实现方式,更重要的一个环节是分析算法的复杂度。在时间复杂度和空间复杂度之间,我们又会更注重时间复杂度,往往用牺牲空间换时间的方法提高时间效率。

时间复杂度按优劣排差不多集中在:

O(1), O(log n), O(n), O(n log n), O(n2), O(nk), O(2n)

二分查找法主要是解决在“一堆数中找出指定的数”这类问题,而想要应用二分查找法,这“一堆数”必须有一下特征:

  • 存储在数组中
  • 有序排列

所以如果是用链表存储的,就无法在其上应用二分查找法了。

至于是顺序递增排列还是递减排列,数组中是否存在相同的元素都不要紧。不过一般情况,我们还是希望并假设数组是递增排列,数组中的元素互不相同。

二分查找程序实现:

#include<iostream>

using namespace std;

//while循环实现

int Binary_Search1(int array[], int n, int value)

{

int left = 0;

int right = n-1;

while (left <= right)//注意这里是"<="还是"=",若为"=",则循环里改为right = middle

{

int middle = left + ((right - left) >> 2);//直接平均可能會溢位,所以用此算法

if (array[middle] > value)

{

right = middle - 1;

}

else if(array[middle] < value)

{

left = middle + 1;

}

else

{

return middle;

}

}

return -1;

}

//递归实现

int Binary_Search2(int array[], int left,int right, int value)

{

if (left > right)//二分查找要有序

{

return -1;

}

int middle = left + ((right - left) >> 2);//直接平均可能會溢位,所以用此算法

if (array[middle] > value)

{

return Binary_Search2(array, left, middle - 1, value);

}

else if (array[middle] < value)

{

return Binary_Search2(array, middle + 1, right, value);

}

else

{

return middle;

}

}

int main()

{

int array[10] = { 1,2,3,5,7,8,9,11,13,45 };

int n = 0, num = 0,ret=0;

n = sizeof(array);

/*int left = 0, right = n-1;*/

cin >> num;

ret = Binary_Search1(array, n, num);

/*ret = Binary_Search2(array, left,right, num);*/

if (ret == -1)

{

cout << "查找失败!"<< endl;

}

else

{

cout << num << "是第" << ret + 1 << "个数" << endl;

}

system("pause");

return 0;

}

运行结果1:

8

8是第6个数

请按任意键继续. . .

运行结果2:

17

查找失败!

请按任意键继续. . .

二分查找法的缺陷

二分查找法的O(log n)让它成为十分高效的算法。不过它的缺陷却也是那么明显的。就在它的限定之上:

     必有序,我们很难保证我们的数组都是有序的。当然可以在构建数组的时候进行排序,可是又落到了第二个瓶颈上:它必须是数组。数组读取效率是O(1),可是它的插入和删除某个元素的效率却是O(n)。因而导致构建有序数组变成低效的事情。

解决这些缺陷问题更好的方法应该是使用二叉查找树了,最好自然是自平衡二叉查找树了,高效的(O(n logn))构建有序元素集合,又能如同二分查找法一样快速(O(log n))的搜寻目标数。

时间: 2024-10-23 18:04:03

二分查找算法的递归、循环实现及其缺陷的相关文章

二分查找算法(递归与非递归两种方式)

首先说说二分查找法. 二分查找法是对一组有序的数字中进行查找,传递相应的数据,进行比较查找到与原数据相同的数据,查找到了返回1,失败返回对应的数组下标. 采用非递归方式完成二分查找法.java代码如下所示. /* * 非递归二分查找算法 * 参数:整型数组,需要比较的数. */ public static int binarySearch(Integer[]srcArray,int des){ //第一个位置. int low=0; //最高位置.数组长度-1,因为下标是从0开始的. int h

二分查找算法的递归实现

还有一个典型的递归例子是对已排序数组的二分查找算法.博e百娱乐城 现在有一个已经排序好的数组,要在这个数组中查找一个元素,以确定它是否在这个数组中,很一般的想法是顺序检查每个元素,看它是否与待查找元素相同.这个方法很容易想到,但它的效率不能让人满意,它的复杂度是O(n)的.现在我们来看看递归在这里能不能更有效. 还是考虑上面的两个条件: 第一:这个问题是否可以分解为形式相同但规模更小的问题? 第二:如果存在这样一种分解,那么这种分解是否存在一种简单情境? 考虑条件一:我们可以这样想,如果想把问题

二分查找算法(递归,循环)

二分查找算法是在有序数组中用到的较为频繁的一种算法,在未接触二分查找算法时,最通用的一种做法是,对数组进行遍历,跟每个元素进行比较,其时间为O(n).但二分查找算法则更优,因为其查找时间为O(lgn),譬如数组{1, 2, 3, 4, 5, 6, 7, 8, 9},查找元素6,用二分查找的算法执行的话,其顺序为:    1.第一步查找中间元素,即5,由于5<6,则6必然在5之后的数组元素中,那么就在{6, 7, 8, 9}中查找,    2.寻找{6, 7, 8, 9}的中位数,为7,7>6,

Python——递归、二分查找算法

递归函数 1. 递归 (1)什么是递归:在函数中调用自身函数(2)最大递归深度:默认997/998--是Python从内存角度出发做的限制 n = 0 def story(): global n n+= 1 print(n) story() #997/998 story() (3)修改最大深度:最好不要改--递归次数太多,则不适合用递归解决问题 import sys sys.setrecursionlimit(2000) #1997/1998 2. 递归的优点 会让代码变简单 3. 递归的缺点

算法_001_二分查找算法

 二分查找算法是在有序数组中用到的较为频繁的一种算法,在未接触二分查找算法时,最通用的一种做法是,对数组进行遍历,跟每个元素进行比较,其时间为O(n).但二分查找算法则更优,因为其查找时间为O(lgn),譬如数组{1, 2, 3, 4, 5, 6, 7, 8, 9},查找元素6,用二分查找的算法执行的话,其顺序为:     1.第一步查找中间元素,即5,由于5<6,则6必然在5之后的数组元素中,那么就在{6, 7, 8, 9}中查找,    2.寻找{6, 7, 8, 9}的中位数,为7,7>

二分查找算法

提到查找算法,最经典的就是二分查找算法了.在二分查找时要在有序的数据里查找目标target,先取中间元素与target比较, 当target小于中间元素的时候,则搜索数组的前半部分,target大于中间元素时,则取数组的后半部分.重复整个搜索的过程 将左半部分与有半部分当作子数组继续查找,直到找到元素或到子数组的大小为0停止. 原理上很简单却有较多细节,尤其是数据边界的取值是否会越界,while循环的条件. java code: public class BinarySearchDemo { p

python函数:递归函数及二分查找算法

本文和大家分享的主要是python的递归函数及二分查找算法相关内容,一起来看看吧,希望对大家学习python有所帮助. 一.递归的定义 def story(): s = """ 从前有个山,山里有座庙,庙里老和尚讲故事, 讲的什么呢? """ print(s) story() story() 老和尚讲故事 递归的定义 -- 在一个函数里再调用这个函数本身.这种魔性的使用函数的方式就叫做 递归 . 递归的最大深度:997 1.python递归最大层

二分查找算法(JAVA)

1.二分查找又称折半查找,它是一种效率较高的查找方法. 2.二分查找要求:(1)必须采用顺序存储结构 (2).必须按关键字大小有序排列 3.原理:将数组分为三部分,依次是中值(所谓的中值就是数组中间位置的那个值)前,中值,中值后:将要查找的值和数组的中值进行比较,若小于中值则在中值前 面找,若大于中值则在中值后面找,等于中值时直接返回.然后依次是一个递归过程,将前半部分或者后半部分继续分解为三部分. 4.实现:二分查找的实现用递归和循环两种方式 5.代码: 1 package other; 2

基础算法介绍 —— 二分查找算法

不知不觉在目前的公司待满3年了,打算回家找份工作.面试中被问到关于算法的题目:有哪些常见的查找算法?下来就把我所掌握的查找算法分享给大家,本文主要介绍二分查找算法. 算法定义(摘自百度):二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好:其缺点是要求待查表为有序表,且插入删除困难.因此,折半查找方法适用于不经常变动而查找频繁的有序列表.首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功:否则利用中间位置记录将表分成前.后两个子表,如果