3.1 实例描述
对输入文件中数据进行就算学生平均成绩。输入文件中的每行内容均为一个学生的姓名和他相应的成绩,如果有多门学科,则每门学科为一个文件。要求在输出中每行有两个间隔的数据,其中,第一个代表学生的姓名,第二个代表其平均成绩。
样本输入:
1)math:
张三 88
李四 99
王五 66
赵六 77
2)china:
张三 78
李四 89
王五 96
赵六 67
3)english:
张三 80
李四 82
王五 84
赵六 86
样本输出:
张三 82
李四 90
王五 82
赵六 76
3.2 设计思路
计算学生平均成绩是一个仿"WordCount"例子,用来重温一下开发MapReduce程序的流程。程序包括两部分的内容:Map部分和Reduce部分,分别实现了map和reduce的功能。
Map处理的是一个纯文本文件, 文件中存放的数据时每一行表示一个学生的姓名和他相应一科成绩。Mapper处理的数据是由InputFormat分解过的数据集,其中 InputFormat的作用是将数据集切割成小数据集InputSplit,每一个InputSlit将由一个Mapper负责处理。此 外,InputFormat中还提供了一个RecordReader的实现,并将一个InputSplit解析成<key,value>对提 供给了map函数。InputFormat的默认值是TextInputFormat,它针对文本文件,按行将文本切割成InputSlit,并用 LineRecordReader将InputSplit解析成<key,value>对,key是行在文本中的位置,value是文件中的 一行。
Map的结果会通过partion分发到Reducer,Reducer做完Reduce操作后,将通过以格式OutputFormat输出。
Mapper最终处理的结果对<key,value>,会送到Reducer中进行合并,合并的时候,有相同key的键/值对则送到同一个 Reducer上。Reducer是所有用户定制Reducer类地基础,它的输入是key和这个key对应的所有value的一个迭代器,同时还有 Reducer的上下文。Reduce的结果由Reducer.Context的write方法输出到文件中。
3.3 程序代码
程序代码如下所示:
package test; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.DoubleWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.util.GenericOptionsParser; public class Score { public static class Map extends Mapper<Object, Text, Text, DoubleWritable>{ private static Text name = new Text(); private static DoubleWritable score = new DoubleWritable(); protected void map(Object key, Text value, Context context) throws java.io.IOException ,InterruptedException { String[] splits = value.toString().split("\t"); if(splits.length != 2){ return; } name.set(splits[0]); score.set(Double.parseDouble(splits[1])); context.write(name, score); }; } public static class Reduce extends Reducer<Text, DoubleWritable, Text, DoubleWritable>{ private static DoubleWritable avg = new DoubleWritable(); protected void reduce(Text name, Iterable<DoubleWritable> scores, Context context) throws java.io.IOException ,InterruptedException { double sum = 0; int count = 0; for (DoubleWritable score : scores) { sum += score.get(); count++; } avg.set(sum/count); context.write(name, avg); }; } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); String[] otherArgs = new GenericOptionsParser(conf,args).getRemainingArgs(); if(otherArgs.length != 2){ System.err.println("Usage:Score Avg"); System.exit(2); } Job job = new Job(conf, "Score Avg"); job.setJarByClass(Score.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(DoubleWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(DoubleWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } }
3.4 准备测试数据
上传数据到hdfs上,设置myeclipse的运行输入参数,运行
3.5
输出结果,不用了吧。
备注:文本文件的编码为"UTF-8",默认为"ANSI",可以另存为时选择,不然中文会出现乱码。
参考:http://penghuaiyi.iteye.com/blog/1943464
附注:
原文采用了(这里未使用)
// 将输入的数据集分割成小数据块splites,提供一个RecordReder的实现
job.setInputFormatClass(TextInputFormat.class);
// 提供一个RecordWriter的实现,负责数据输出
job.setOutputFormatClass(TextOutputFormat.class);
这两句话不知是什么意思。起什么作用?如果您看到,可帮我解释下啦。