4 Values whose Sum is 0
Time Limit: 15000MS | Memory Limit: 228000K | |
Total Submissions: 17658 | Accepted: 5187 | |
Case Time Limit: 5000MS |
Description
The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following,
we assume that all lists have the same size n .
Input
The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228
) that belong respectively to A, B, C and D .
Output
For each input file, your program has to write the number quadruplets whose sum is zero.
Sample Input
6 -45 22 42 -16 -41 -27 56 30 -36 53 -37 77 -36 30 -75 -46 26 -38 -10 62 -32 -54 -6 45
Sample Output
5
Hint
Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).
Source
题目链接:http://poj.org/problem?id=2785
题目大意:给四组数,一列为一组,从每组中取一个出来使得四个相加为0,问有多少种方案
题目分析:a + b + c + d = 0 ==> a + b = -c -d,我们先预处理出前两组能组成的值,复杂度为n^2,然后排序后二分查找,这里最简便的方法是分别求出upper_bound(num, num + cnt, -c-d) - num,lower_bound(num, num + cnt, -c-d) - num,前者表示num数组里大于-c-d的第一个位置,后者表示num数组里大于等于-c-d的第一个位置,然后一减就得到与-c-d相等的个数
#include <cstdio> #include <cstring> #include <algorithm> #include <set> #include <iostream> #define ll long long using namespace std; int const MAX = 4e3 + 5; int a[MAX], b[MAX], c[MAX], d[MAX]; int num[MAX * MAX]; int main() { int n; while(scanf("%d", &n) != EOF) { ll ans = 0; int cnt = 0; for(int i = 1; i <= n; i++) scanf("%d %d %d %d", &a[i], &b[i], &c[i], &d[i]); for(int i = 1; i <= n; i++) for(int j = 1; j <= n; j++) num[cnt ++] = a[i] + b[j]; sort(num, num + cnt); for(int i = 1; i <= n; i++) { for(int j = 1; j <= n; j++) { int tmp = -c[i] - d[j]; int t1 = lower_bound(num, num + cnt, tmp) - num; int t2 = upper_bound(num, num + cnt, tmp) - num; ans += (ll)(t2 - t1); } } cout << ans << endl; } }
版权声明:本文为博主原创文章,未经博主允许不得转载。