POJ 2785 4 Values whose Sum is 0 (对半分解 二分搜索)

4 Values whose Sum is 0

Time Limit: 15000MS   Memory Limit: 228000K
Total Submissions: 17658   Accepted: 5187
Case Time Limit: 5000MS

Description

The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following,
we assume that all lists have the same size n .

Input

The first line of the input file contains the size of the lists n (this value can be as large as 4000). We then have n lines containing four integer values (with absolute value as large as 228
) that belong respectively to A, B, C and D .

Output

For each input file, your program has to write the number quadruplets whose sum is zero.

Sample Input

6
-45 22 42 -16
-41 -27 56 30
-36 53 -37 77
-36 30 -75 -46
26 -38 -10 62
-32 -54 -6 45

Sample Output

5

Hint

Sample Explanation: Indeed, the sum of the five following quadruplets is zero: (-45, -27, 42, 30), (26, 30, -10, -46), (-32, 22, 56, -46),(-32, 30, -75, 77), (-32, -54, 56, 30).

Source

Southwestern Europe 2005

题目链接:http://poj.org/problem?id=2785

题目大意:给四组数,一列为一组,从每组中取一个出来使得四个相加为0,问有多少种方案

题目分析:a + b + c + d = 0  ==> a + b = -c -d,我们先预处理出前两组能组成的值,复杂度为n^2,然后排序后二分查找,这里最简便的方法是分别求出upper_bound(num, num + cnt, -c-d) - num,lower_bound(num, num + cnt, -c-d) - num,前者表示num数组里大于-c-d的第一个位置,后者表示num数组里大于等于-c-d的第一个位置,然后一减就得到与-c-d相等的个数

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <iostream>
#define ll long long
using namespace std;
int const MAX = 4e3 + 5;
int a[MAX], b[MAX], c[MAX], d[MAX];
int num[MAX * MAX];

int main()
{
    int n;
    while(scanf("%d", &n) != EOF)
    {
        ll ans = 0;
        int cnt = 0;
        for(int i = 1; i <= n; i++)
            scanf("%d %d %d %d", &a[i], &b[i], &c[i], &d[i]);
        for(int i = 1; i <= n; i++)
            for(int j = 1; j <= n; j++)
                num[cnt ++] = a[i] + b[j];
        sort(num, num + cnt);
        for(int i = 1; i <= n; i++)
        {
            for(int j = 1; j <= n; j++)
            {
                int tmp = -c[i] - d[j];
                int t1 = lower_bound(num, num + cnt, tmp) - num;
                int t2 = upper_bound(num, num + cnt, tmp) - num;
                ans += (ll)(t2 - t1);
            }
        }
        cout << ans << endl;
    }
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-12-09 22:27:08

POJ 2785 4 Values whose Sum is 0 (对半分解 二分搜索)的相关文章

poj 2785 4 Values whose Sum is 0(sort+二分)

题意: 给你ABCD四个集合,集合中数的个数都为N(N<=4000),如果分别在ABCD四个集合中取一个数,a b c d ,求有多少种可能使得a+b+c+d=0. 当然你可以尝试枚举所有的组合,绝对可以计算出结果,大概有N^4种吧,如果你有足够的时间还是可以算出来的,哈哈. 当然我不是用上面一种方法计算的,那样算肯定超时. 我的做法是求出所有a+b 到ab数组中, 和所有 c+d到cd数组中,然后排序,枚举每个ab,用二分在cd中查找有没有可能组成0.  有个问题就是二分只能返回一个结果,所以

poj 2785 4 Values whose Sum is 0 (简单二分)

//每列选一个数相加为0的个数 # include <stdio.h> # include <algorithm> # include <string.h> using namespace std; int ab[4010*4010],cd[4010*4010]; int main() { int n,i,k,j,count,a[4010],b[4010],c[4010],d[4010]; while(~scanf("%d",&n)) { f

POJ 2785 4 Values whose Sum is 0 [二分]

传送门 13773503 njczy2010 2785 Accepted 25248K 7079MS G++ 1423B 2015-01-11 10:26:48 4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 16102   Accepted: 4659 Case Time Limit: 5000MS Description The SUM problem can be

POJ 2785 4 Values whose Sum is 0(折半枚举)

4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 17088   Accepted: 4998 Case Time Limit: 5000MS Description The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how

POJ 2785 4 Values whose Sum is 0

4 Values whose Sum is 0 Time Limit: 15000MS   Memory Limit: 228000K Total Submissions: 22691   Accepted: 6869 Case Time Limit: 5000MS Description The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how

poj 2785 4 Values whose Sum is 0 哈希

题意: 给4个集合ABCD,问有多少种从中各取一个数和为0的方案. 分析: 枚举前两个数建哈希表,枚举后两个数查找即可. 代码: //poj 2785 //sep9 #include <iostream> using namespace std; const int maxN=4012; const int maxM=3999972; int a[maxN],b[maxN],c[maxN],d[maxN]; int hash[maxM+10]; int e; struct Edge { int

poj 2785 4 Values whose Sum is 0 折半枚举

题目链接:http://poj.org/problem?id=2785 枚举的一般思路就是先把所有的状态枚举出来 最后一次性判断该状态合法不合法 而折半枚举的思想是 先枚举一半的状态 把他们的状态存起来 排序 然后再枚举剩下一般 用目标反推前一半的期望状态 接下来在前一半的结果数组中查找是否有相应结果 之所以能优化是因为结果数组有序 就可以用二分搜索 复杂度从O(n^2 * n^2) 降到 O(n^2 * log(n^2))即(O(n^2 * log n)) 二分搜索的一个技巧 在有序数组中用二

poj 2785 4 Values whose Sum is 0(折半枚举(双向搜索))

Description The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we assume that all lists have the s

POJ 2785 4 Values whose Sum is 0(暴力枚举的优化策略)

题目链接: https://cn.vjudge.net/problem/POJ-2785 The SUM problem can be formulated as follows: given four lists A, B, C, D of integer values, compute how many quadruplet (a, b, c, d ) ∈ A x B x C x D are such that a + b + c + d = 0 . In the following, we