反向传播算法的理解

反向传播算法从大体上理解就是通过计算最终误差与某个权值参数的梯度,来更新权值参数。

梯度就是最终误差对参数的导数,通过链式求导法则求出。

然后通过赋予学习率计算得出,例如:

其中  为学习率。

Python代码如下:

import numpy as np

def nonlin(x, deriv = False):
    if(deriv == True):
        return x * (1 - x)
    return 1 / (1 + np.exp(-x))//计算s函数,以及用于反向传播的函数

X = np.array([[0.35], [0.9]])
y = np.array([[0.5]])

np.random.seed(1)

W0 = np.array([[0.1, 0.8], [0.4, 0.6]])
W1 = np.array([[0.3, 0.9]])

print ‘original ‘, W0, ‘\n‘, W1

for j in xrange(100):
    l0 = X
    l1 = nonlin(np.dot(W0, l0))
    l2 = nonlin(np.dot(W1, l1))
    l2_error = y - l2
    Error = 1 / 2.0 * (y-l2)**2
    print ‘Error:‘, Error

    l2_delta = l2_error * nonlin(l2, deriv=True)

    l1_error = l2_delta * W1 #back propagation,误差向前传播
    l1_delta = l1_error * nonlin(l1, deriv=True) //类似l2_delta的计算

    W1 += l2_delta * l1.T    //采用的是另一种反向传播算法,与用误差和参数梯度计算所得结果一样。通过s函数实现。更新的是输出层的参数,仅需一次运算
    W0 += l0.T.dot(l1_delta)
    print W0, ‘\n‘, W1

  

原文地址:https://www.cnblogs.com/ywheunji/p/10325921.html

时间: 2024-07-31 20:35:15

反向传播算法的理解的相关文章

DL学习笔记-反向传播算法的理解

作者:杜客链接:https://zhuanlan.zhihu.com/p/21407711来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 译者注:本文智能单元首发,译自斯坦福CS231n课程笔记Backprop Note,课程教师Andrej Karpathy授权翻译.本篇教程由杜客翻译完成,堃堃和巩子嘉进行校对修改.译文含公式和代码,建议PC端阅读. 原文如下: 内容列表: 简介 简单表达式和理解梯度 复合表达式,链式法则,反向传播 直观理解反向传播 模块:Si

神经网络训练中的Tricks之高效BP(反向传播算法)

神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) [email protected] http://blog.csdn.net/zouxy09 Tricks!这是一个让人听了充满神秘和好奇的词.对于我们这些所谓的尝试应用机器学习技术解决某些问题的人,更是如此.曾记得,我们绞尽脑汁,搓手顿足,大喊“为什么我跑的模型不work?”,“为什么我实现的效果那么差?”,“为什么我复现的结果没有他论文里面说的那么好?”.有人会和你说“你不懂调参!

【神经网络和深度学习】笔记 - 第二章 反向传播算法

上一章中我们遗留了一个问题,就是在神经网络的学习过程中,在更新参数的时候,如何去计算损失函数关于参数的梯度.这一章,我们将会学到一种快速的计算梯度的算法:反向传播算法. 这一章相较于后面的章节涉及到的数学知识比较多,如果阅读上有点吃力的话也可以完全跳过这一章,把反向传播当成一个计算梯度的黑盒即可,但是学习这些数学知识可以帮助我们更深入的理解神经网络. 反向传播算法的核心目的是对于神经网络中的任何weight或bias计算损失函数$C$关于它们的偏导数$\frac{\partial C}{\par

《神经网络和深度学习》系列文章十六:反向传播算法代码

出处: Michael Nielsen的<Neural Network and Deep Learning>,点击末尾“阅读原文”即可查看英文原文. 本节译者:哈工大SCIR硕士生 李盛秋 声明:如需转载请联系[email protected],未经授权不得转载. 使用神经网络识别手写数字 反向传播算法是如何工作的 热身:一个基于矩阵的快速计算神经网络输出的方法 关于损失函数的两个假设 Hadamard积 反向传播背后的四个基本等式 四个基本等式的证明(选读) 反向传播算法 反向传播算法代码

机器学习之反向传播算法

Thoughts of Algorithms 博客园 首页 联系 订阅 管理 随笔 - 54  文章 - 1  评论 - 141 机器学习公开课笔记(5):神经网络(Neural Network)--学习 这一章可能是Andrew Ng讲得最不清楚的一章,为什么这么说呢?这一章主要讲后向传播(Backpropagration, BP)算法,Ng花了一大半的时间在讲如何计算误差项δδ,如何计算ΔΔ的矩阵,以及如何用Matlab去实现后向传播,然而最关键的问题--为什么要这么计算?前面计算的这些量到

神经网络中的参数的求解:前向和反向传播算法

神经网络最基本的知识可以参考神经网络基本知识,基本的东西说的很好了,然后这里讲一下神经网络中的参数的求解方法. 一些变量解释: 标上""的圆圈被称为偏置节点,也就是截距项. 本例神经网络有参数 ,其中 (下面的式子中用到)是第 层第 单元与第 层第 单元之间的联接参数(其实就是连接线上的权重,注意标号顺序), 是第 层第 单元的偏置项. 用 表示第 层的节点数(偏置单元不计在内) 用 表示第 层第 单元的激活值(输出值).当 时, ,也就是样本输入值的第 个特征. 用 表示第层各单元对

机器学习之五:神经网络、反向传播算法

一.逻辑回归的局限 在逻辑回归一节中,使用逻辑回归的多分类,实现了识别20*20的图片上的数字. 但所使用的是一个一阶的模型,并没有使用多项式,为什么? 可以设想一下,在原有400个特征的数据样本中,增加二次.三次.四次多项式,会是什么情形? 很显然,训练样本的特征数量将会拔高多个数量级,而且,更重要的,要在一个式子中拟合这么多的特征,其难度是非常大的,可能无法收敛到一个比较理想的状态. 也就是说,逻辑回归没法提供很复杂的模型. 因为其本质上是一个线性的分类器,擅长解决的是线性可分的问题. 那么

神经网络和深度学习之——误差反向传播算法

在讲解误差反向传播算法之前,我们来回顾一下信号在神经网络中的流动过程.请细细体会,当输入向量\(X\)输入感知器时,第一次初始化权重向量\(W\)是随机组成的,也可以理解成我们任意设置了初始值,并和输入做点积运算,然后模型通过权重更新公式来计算新的权重值,更新后的权重值又接着和输入相互作用,如此迭代多次,得到最终的权重. 信号向前传播,权重的更新反向传播,是这样吗? 是的,你的直觉没错,确实是反向传播. 1. 前馈的实质 反向传播这个术语经常被误解为用于多层神经网络的整个学习算法.实际上,反向传

深度学习之反向传播算法

直观理解反向传播 反向传播算法是用来求那个复杂到爆的梯度的. 上一集中提到一点,13000维的梯度向量是难以想象的.换个思路,梯度向量每一项的大小,是在说代价函数对每个参数有多敏感. 如上图,我们可以这样里理解,第一个权重对代价函数的影响是是第二个的32倍. 我们来考虑一个还没有被训练好的网络.我们并不能直接改动这些激活值,只能改变权重和偏置值.但记住,我们想要输出层出现怎样的变动,还是有用的. 我们希望图像的最后分类结果是2,我们期望第3个输出值变大,其余输出值变小,并且变动的大小应该与现在值