【AtCoder】CODE FESTIVAL 2017 qual C

A - Can you get AC?

No

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pb push_back
#define mp make_pair
using namespace std;
typedef long long int64;
char s[15];
int main() {
    scanf("%s",s + 1);
    int l = strlen(s + 1);
    for(int i = 1 ; i < l ; ++i) {
        if(s[i] == ‘A‘ && s[i + 1] == ‘C‘) {
            puts("Yes");return 0;
        }
    }
    puts("No");return 0;
}

B - Similar Arrays

dp[i][1/0]表示到第i个数乘积是奇数或偶数

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pb push_back
#define mp make_pair
#define enter putchar(‘\n‘)
#define space putchar(‘ ‘)
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < ‘0‘ || c > ‘9‘) {
        if(c == ‘-‘) f = -1;
        c = getchar();
    }
    while(c >= ‘0‘ && c <= ‘9‘) {
        res = res * 10 + c - ‘0‘;
        c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar(‘-‘);}
    if(x >= 10) {
        out(x / 10);
    }
    putchar(‘0‘ + x % 10);
}
int N,A[15];
int64 dp[15][2];
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    read(N);
    for(int i = 1 ; i <= N ; ++i) read(A[i]);
    dp[0][1] = 1;
    for(int i = 1 ; i <= N ; ++i) {
        for(int j = -1 ; j <= 1 ; ++j) {
            if((A[i] + j) & 1) {
                dp[i][1] += dp[i - 1][1];
                dp[i][0] += dp[i - 1][0];
            }
            else {
                dp[i][0] += dp[i - 1][0] + dp[i - 1][1];
            }
        }
    }
    out(dp[N][0]);enter;
}

C - Inserting ‘x‘

从左右两边各一个指针,如果匹配就往里走

如果不匹配且某一个为x,则把为x的那个往里走

如果不是则无法变成回文串

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pb push_back
#define mp make_pair
#define enter putchar(‘\n‘)
#define space putchar(‘ ‘)
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < ‘0‘ || c > ‘9‘) {
        if(c == ‘-‘) f = -1;
        c = getchar();
    }
    while(c >= ‘0‘ && c <= ‘9‘) {
        res = res * 10 + c - ‘0‘;
        c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar(‘-‘);}
    if(x >= 10) {
        out(x / 10);
    }
    putchar(‘0‘ + x % 10);
}
char s[100005];
int N;
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    scanf("%s",s + 1);
    N = strlen(s + 1);
    int p = 1,q = N;
    int ans = 0;
    while(p < q) {
        if(s[p] == s[q]) {++p;--q;}
        else {
            if(s[p] == ‘x‘) {++p;++ans;}
            else if(s[q] == ‘x‘) {--q;++ans;}
            else {puts("-1");return 0;}
        }
    }
    out(ans);enter;return 0;
}

D - Yet Another Palindrome Partitioning

记录一下一个位置前缀和奇偶性,压成一个27bit的数s

这个位置能从前面和s相同的位置和s改了一位的位置转移过来

不同的s只有n个,拿map记一下就好

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(‘ ‘)
#define enter putchar(‘\n‘)
#define MAXN 200005
#define eps 1e-10
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < ‘0‘ || c > ‘9‘) {
        if(c == ‘-‘) f = -1;
        c = getchar();
    }
    while(c >= ‘0‘ && c <= ‘9‘) {
        res = res * 10 + c - ‘0‘;
        c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar(‘-‘);}
    if(x >= 10) {
        out(x / 10);
    }
    putchar(‘0‘ + x % 10);
}
char s[MAXN];
int sum[MAXN],N;
int dp[MAXN];
map<int,int> zz;
void Init() {
    scanf("%s",s + 1);
    N = strlen(s + 1);
    for(int i = 1 ; i <= N ; ++i) {
        sum[i] = sum[i - 1];
        sum[i] ^= (1 << s[i] - ‘a‘);
    }
}
void Solve() {
    zz[0] = 0;
    for(int i = 1 ; i <= N ; ++i) {
        dp[i] = i;
        if(zz.count(sum[i])) dp[i] = min(dp[i],zz[sum[i]] + 1);
        for(int j = 0 ; j < 26 ; ++j) {
            if(zz.count(sum[i] ^ (1 << j))) dp[i] = min(dp[i],zz[sum[i] ^ (1 << j)] + 1);
        }
        if(!zz.count(sum[i])) zz[sum[i]] = dp[i];
        else zz[sum[i]] = min(zz[sum[i]],dp[i]);
    }
    out(dp[N]);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Init();
    Solve();
}

E - Cubes

注意读题,有句话是ABC两两互质

那么一共经过的方块数是

A + B + C - 2

认为有一位经过某个整数则经过了一个方块

那么其实可以这么认为

A + B + C - gcd(A,B) - gcd(B,C) - gcd(B,A) + gcd(A,B,C)

由于A,B,C互质,那么每次路径上的相邻两个方块肯定有一个面重合

如果去掉那个方块的限制,那么答案是

\((2D + 1)^3 + (A + B + C - 3) \cdot (2D + 1)^2\)

就是以路径上一个点为中心上下左右各\(D\)个点

每次增量是一个面

那么如何计算交呢,我们需要三维每一维分别取出前不足D的点和后不足D的点

可以用分数记录一下这些点,个数只有\(O(D)\)个

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar(‘\n‘)
#define space putchar(‘ ‘)
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < ‘0‘ || c > ‘9‘) {
    if(c == ‘-‘) f = -1;
    c = getchar();
    }
    while(c >= ‘0‘ && c <= ‘9‘) {
    res = res * 10 + c - ‘0‘;
    c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar(‘-‘);}
    if(x >= 10) {
    out(x / 10);
    }
    putchar(‘0‘ + x % 10);
}
const int MOD = 1000000007;
int64 t[3],D;
vector<pair<int64,int64> > v;
int ans;
int inc(int a,int b) {
    return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
    return 1LL * a * b % MOD;
}
int mul3(int a,int b,int c) {
    return mul(mul(a,b),c);
}
void update(int &x,int y) {
    x = inc(x,y);
}
void Solve() {
    for(int i = 0 ; i < 3 ; ++i) read(t[i]);read(D);
    for(int64 i = 0 ; i <= D ; ++i) {
    for(int j = 0 ; j < 3 ; ++j) {
        if(i && i < t[j]) v.pb(mp(i,t[j]));
        if(t[j] - 1 - i > 0) v.pb(mp(t[j] - i - 1,t[j]));
    }
    }
    sort(v.begin(),v.end(),[](pair<int64,int64> a,pair<int64,int64> b){return a.fi * b.se < b.fi * a.se;});
    v.erase(unique(v.begin(),v.end()),v.end());
    int64 a[3] = {0,0,0};
    update(ans,mul3(min(t[0],D + 1),min(t[1],D + 1),min(t[2],D + 1)));
    for(auto k : v) {
    int64 b[3] = {a[0],a[1],a[2]};
    for(int j = 0 ; j < 3 ; ++j) {
        a[j] = t[j] * k.fi / k.se;
    }
    int64 d[3];
    for(int j = 0 ; j < 3 ; ++j) {
        d[j] = min(b[j] + D,t[j] - 1) - max(b[j] - D,0LL) + 1;
    }
    for(int j = 0 ; j < 3 ; ++j) {
        if(a[j] + D < t[j]) {
        int t = a[j] - b[j];
        for(int h = 0 ; h < 3 ; ++h) {
            if(h != j) t = mul(t,d[h]);
        }
        update(ans,t);
        }
    }
    }
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
}

F - Three Gluttons

做atc总觉得自己是个智障,早点退役保平安

条件我都没分析出来。。。= =

就是认为我们把这个分成三个数字不同的序列,每个长度是\(N / 3\)

第\(t\)次吃要满足\(a_{1},a_{2},....a_{i_t},b_{1},b_{2},...b_{j_t}\)

中\(a_{i_t}\)和\(b_{j_t}\)只出现了一次

这样保证了两个序列里不会选重

然后第三个序列假如吃的是\(x_{1},x_{2}...x_{\frac{N}{3}}\)

我要满足\(x_{t}\)

在\(a_{1},a_{2},....a_{i_t},b_{1},b_{2},...b_{j_t}\)没有出现过

然后呢,如果我们找出一个满足条件的吃的三个序列,你会发现,这样第三种序列填数的方案,和我选了什么并没有关系!!!!!

然后设\(dp[i][j]\)表示考虑到第i个,已经填在c序列里的有j个

i没增加1,能填的数会多两个,直接dp就行

然后就是怎么求三个合法序列了

从后往前推,发现\(x_{t}\)不能填的数就是\(a_{1},a_{2},....a_{i_t},b_{1},b_{2},...b_{j_t}\)出现过的数,a,b,c的后\(n - t\)个

前缀和优化一下可以做到\(N^{3}\)

#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(‘ ‘)
#define enter putchar(‘\n‘)
#define MAXN 20000005
#define eps 1e-10
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
    res = 0;T f = 1;char c = getchar();
    while(c < ‘0‘ || c > ‘9‘) {
        if(c == ‘-‘) f = -1;
        c = getchar();
    }
    while(c >= ‘0‘ && c <= ‘9‘) {
        res = res * 10 + c - ‘0‘;
        c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {x = -x;putchar(‘-‘);}
    if(x >= 10) {
        out(x / 10);
    }
    putchar(‘0‘ + x % 10);
}
const int MOD = 1000000007;
int inc(int a,int b) {
    return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
    return 1LL * a * b % MOD;
}
void update(int &x,int y) {
    x = inc(x,y);
}
int fpow(int x,int c) {
    int res = 1,t = x;
    while(c) {
        if(c & 1) res = mul(res,t);
        t = mul(t,t);
        c >>= 1;
    }
    return res;
}
int dp[150][405],N,f[150][405][405],w,ans;
int a[405],b[405],fac[405],invfac[405];
bool visa[405],visb[405],vis[405][405];
int cnt[405][405],g[405];
int A(int n,int m) {
    if(n < m) return 0;
    return mul(fac[n],invfac[n - m]);
}
void Solve() {
    read(N);
    for(int i = 1 ; i <= N ; ++i) read(a[i]);
    for(int i = 1 ; i <= N ; ++i) read(b[i]);
    fac[0] = 1;
    for(int i = 1 ; i <= N ; ++i) fac[i] = mul(fac[i - 1],i);
    invfac[N] = fpow(fac[N],MOD - 2);
    for(int i = N - 1 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
    dp[1][2] = 1;
    for(int i = 1 ; i < N / 3 ; ++i) {
        for(int j = 0 ; j <= i * 2 ; ++j) {
            for(int h = 0 ; h <= j; ++h) {
                update(dp[i + 1][j + 2 - h],mul(A(j,h),dp[i][j]));
            }
        }
    }
    for(int j = 0 ; j <= (N / 3) * 2 ; ++j) update(w,mul(dp[N / 3][j],fac[j]));
    for(int i = 1 ; i <= N ; ++i) {
        visa[a[i]] = 1;
        cnt[i][0] = i;
        memset(visb,0,sizeof(visb));
        for(int j = 1 ; j <= N ; ++j) {
            visb[b[j]] = 1;
            cnt[i][j] = cnt[i][j - 1];
            if(!visa[b[j]]) cnt[i][j]++;
            if(!visa[b[j]] && !visb[a[i]]) vis[i][j] = 1;
        }
    }
    for(int t = N / 3 ; t >= 1 ; --t) {
        memset(g,0,sizeof(g));

        for(int i = N ; i >= 1 ; --i) {
            int s = (t == N / 3);
            for(int j = N ; j >= 1 ; --j) {
                if(vis[i][j]) f[t][i][j] = mul(s,N - 3 * (N / 3 - t) - cnt[i][j]);
                update(s,g[j]);
                update(g[j],f[t + 1][i][j]);
            }
        }
    }
    for(int i = 1 ; i <= N ; ++i) {
        for(int j = 1 ; j <= N ; ++j) {
            update(ans,f[1][i][j]);
        }
    }
    ans = mul(ans,w);
    out(ans);enter;
}
int main() {
#ifdef ivorysi
    freopen("f1.in","r",stdin);
#endif
    Solve();
}

原文地址:https://www.cnblogs.com/ivorysi/p/10347107.html

时间: 2024-10-04 01:48:22

【AtCoder】CODE FESTIVAL 2017 qual C的相关文章

【Atcoder】CODE FESTIVAL 2017 qual C D - Yet Another Palindrome Partitioning

[题意] 给定只含小写字母的字符串,要求分割成若干段使段内字母重组顺序后能得到回文串,求最少分割段数.n<=2*10^5 [题解] 关键在于快速判断一个字符子串是否合法,容易发现合法仅当不存在或只存在一个奇数字符,其余字符均为偶数. 当涉及到奇偶性(%2)时,很自然能想到异或. 将小写字母a~z转化2^0~2^25,那么一个字符子串合法当且仅当其连续异或值是0或2^i(0<=i<=25). 令f[i]表示前i个合法的最少段数,sum[i]表示异或前缀和,则有: f[i]=min(f[j]

【AtCoder】CODE FESTIVAL 2017 qual B

最近不知道为啥被安利了饥荒,但是不能再玩物丧志了,不能颓了 饥荒真好玩 A - XXFESTIVAL CCFESTIVAL #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define space putchar(' ') #define enter putchar('\n'

【AtCoder】CODE FESTIVAL 2016 qual C E-順列辞書 / Encyclopedia of Permutations

考虑对于一个位置$s_i$有什么东西能统计进去 考虑统计恰好在$s_i$这个位置分出大小的元素 发现对于一个$s_i$,答案是$(s_i - 1 -\sum_{j=1}^{i-1}[s_j<s_i])*(N-i)!$ 发现后面这个东西是统一乘的,于是只考虑前半部分 接下来对当前这个$s_i$的位置分类讨论 然后我们可以发现前半部分又可以拆成两个部分 $\sum s_i$ 和 $\sum_{j=1}^{i-1}[s_j<s_i]$ 为了方便表达,接下来定义空的位置为$K$,未被填入的数字减一的和

[Atcoder Code Festival 2017 Qual B Problem F]Largest Smallest Cyclic Shift

题目大意:给你\(A\)个a,\(B\)个b,\(C\)个c,要你构造一个字符串,使它的最小循环表示法最大.求这个表示法.解题思路:不知道怎么证,但把a.b.c当做单独的字符串扔进容器,每次把字典序最小的和字典序最大的两个字符串合并就是答案.容器用multiset即可. C++ Code: #include<cstdio> #include<set> #include<string> using namespace std; multiset<string>

atcoder CODE FESTIVAL 2017 qual C D - Yet Another Palindrome Partitioning

Problem Statement We have a string s consisting of lowercase English letters. Snuke is partitioning s into some number of non-empty substrings. Let the subtrings obtained be s1, s2, …, sNfrom left to right. (Here, s=s1+s2+…+sN holds.) Snuke wants to

101 to 010 Atcoder CODE FESTIVAL 2017 qual B D

https://www.luogu.org/problemnew/show/AT3575 题解 根本不会.. 错误记录:缺少32行的转移.显然这个转移是必要的 1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 #include<vector> 5 using namespace std; 6 #define fi first 7 #define se second 8 #define

CODE FESTIVAL 2017 qual A C Palindromic Matrix(思维题)

题目链接:点我呀 题意:给出n*m由26位小写字母组成的矩阵,问是否能够重构形成一个每行每列都是回文的矩阵 题解:分三种情况考虑(偶偶,奇奇,奇偶),每种情况下考虑最少 需要4个相同字母的字母数,2个相同字母的字母数和一个字母的字母数(只有奇奇的时候才需要一个字母) 最后判断一下.感觉自己的这个代码不是很简洁,明天起来看看别人怎么写的,睡觉去... 1 //Atcoder 3 2 #include <cstring> 3 #include <iostream> 4 #include

CODE FESTIVAL 2017 qual A--C - Palindromic Matrix(模拟所有情况,注意细节)

个人心得:其实本来这题是有规律的不过当时已经将整个模拟过程都构思出来了,就打算试试,将每个字符和总和用优先队列 装起来,然后枚举每个点,同时进行位置标志,此时需要多少个点的时候拿出最大的和出来,若不满足就输出No,结果一直卡在三组 数据.比赛完后一想,优先队列虽然用处大,不过当行列存在奇数的时候此时只要2个就可以,而如果你从最大的4个中拿出来, 那么下一层循环中必然有一个位置无法填充,如此就导致了算法的失败.所以后面建立个奇偶判定就好了. 感悟: 多注意思考和细节,从不同的层次看待问题,既可以全

CODE FESTIVAL 2017 qual A--B-fLIP(换种想法,暴力枚举)

个人心得:开始拿着题目还是有点懵逼的,以前做过相同的,不过那是按一个位置行列全都反之,当时也是没有深究.现在在打比赛不得不 重新构思,后面一想把所有的状态都找出来,因为每次确定了已经按下的行和列后,按不同的操作所加的数都是一样的,于是就想到了用set 暴力枚举,从1-n个分别行列按钮,然后再枚举不同操作即确定行时再对列进行操作,每次操作放入set就可以了. 题目: Problem Statement We have a grid with N rows and M columns of squa