A - Can you get AC?
No
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pb push_back
#define mp make_pair
using namespace std;
typedef long long int64;
char s[15];
int main() {
scanf("%s",s + 1);
int l = strlen(s + 1);
for(int i = 1 ; i < l ; ++i) {
if(s[i] == ‘A‘ && s[i + 1] == ‘C‘) {
puts("Yes");return 0;
}
}
puts("No");return 0;
}
B - Similar Arrays
dp[i][1/0]表示到第i个数乘积是奇数或偶数
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pb push_back
#define mp make_pair
#define enter putchar(‘\n‘)
#define space putchar(‘ ‘)
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < ‘0‘ || c > ‘9‘) {
if(c == ‘-‘) f = -1;
c = getchar();
}
while(c >= ‘0‘ && c <= ‘9‘) {
res = res * 10 + c - ‘0‘;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar(‘-‘);}
if(x >= 10) {
out(x / 10);
}
putchar(‘0‘ + x % 10);
}
int N,A[15];
int64 dp[15][2];
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
read(N);
for(int i = 1 ; i <= N ; ++i) read(A[i]);
dp[0][1] = 1;
for(int i = 1 ; i <= N ; ++i) {
for(int j = -1 ; j <= 1 ; ++j) {
if((A[i] + j) & 1) {
dp[i][1] += dp[i - 1][1];
dp[i][0] += dp[i - 1][0];
}
else {
dp[i][0] += dp[i - 1][0] + dp[i - 1][1];
}
}
}
out(dp[N][0]);enter;
}
C - Inserting ‘x‘
从左右两边各一个指针,如果匹配就往里走
如果不匹配且某一个为x,则把为x的那个往里走
如果不是则无法变成回文串
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define pb push_back
#define mp make_pair
#define enter putchar(‘\n‘)
#define space putchar(‘ ‘)
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < ‘0‘ || c > ‘9‘) {
if(c == ‘-‘) f = -1;
c = getchar();
}
while(c >= ‘0‘ && c <= ‘9‘) {
res = res * 10 + c - ‘0‘;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar(‘-‘);}
if(x >= 10) {
out(x / 10);
}
putchar(‘0‘ + x % 10);
}
char s[100005];
int N;
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
scanf("%s",s + 1);
N = strlen(s + 1);
int p = 1,q = N;
int ans = 0;
while(p < q) {
if(s[p] == s[q]) {++p;--q;}
else {
if(s[p] == ‘x‘) {++p;++ans;}
else if(s[q] == ‘x‘) {--q;++ans;}
else {puts("-1");return 0;}
}
}
out(ans);enter;return 0;
}
D - Yet Another Palindrome Partitioning
记录一下一个位置前缀和奇偶性,压成一个27bit的数s
这个位置能从前面和s相同的位置和s改了一位的位置转移过来
不同的s只有n个,拿map记一下就好
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(‘ ‘)
#define enter putchar(‘\n‘)
#define MAXN 200005
#define eps 1e-10
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < ‘0‘ || c > ‘9‘) {
if(c == ‘-‘) f = -1;
c = getchar();
}
while(c >= ‘0‘ && c <= ‘9‘) {
res = res * 10 + c - ‘0‘;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar(‘-‘);}
if(x >= 10) {
out(x / 10);
}
putchar(‘0‘ + x % 10);
}
char s[MAXN];
int sum[MAXN],N;
int dp[MAXN];
map<int,int> zz;
void Init() {
scanf("%s",s + 1);
N = strlen(s + 1);
for(int i = 1 ; i <= N ; ++i) {
sum[i] = sum[i - 1];
sum[i] ^= (1 << s[i] - ‘a‘);
}
}
void Solve() {
zz[0] = 0;
for(int i = 1 ; i <= N ; ++i) {
dp[i] = i;
if(zz.count(sum[i])) dp[i] = min(dp[i],zz[sum[i]] + 1);
for(int j = 0 ; j < 26 ; ++j) {
if(zz.count(sum[i] ^ (1 << j))) dp[i] = min(dp[i],zz[sum[i] ^ (1 << j)] + 1);
}
if(!zz.count(sum[i])) zz[sum[i]] = dp[i];
else zz[sum[i]] = min(zz[sum[i]],dp[i]);
}
out(dp[N]);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Init();
Solve();
}
E - Cubes
注意读题,有句话是ABC两两互质
那么一共经过的方块数是
A + B + C - 2
认为有一位经过某个整数则经过了一个方块
那么其实可以这么认为
A + B + C - gcd(A,B) - gcd(B,C) - gcd(B,A) + gcd(A,B,C)
由于A,B,C互质,那么每次路径上的相邻两个方块肯定有一个面重合
如果去掉那个方块的限制,那么答案是
\((2D + 1)^3 + (A + B + C - 3) \cdot (2D + 1)^2\)
就是以路径上一个点为中心上下左右各\(D\)个点
每次增量是一个面
那么如何计算交呢,我们需要三维每一维分别取出前不足D的点和后不足D的点
可以用分数记录一下这些点,个数只有\(O(D)\)个
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define enter putchar(‘\n‘)
#define space putchar(‘ ‘)
//#define ivorysi
using namespace std;
typedef long long int64;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < ‘0‘ || c > ‘9‘) {
if(c == ‘-‘) f = -1;
c = getchar();
}
while(c >= ‘0‘ && c <= ‘9‘) {
res = res * 10 + c - ‘0‘;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar(‘-‘);}
if(x >= 10) {
out(x / 10);
}
putchar(‘0‘ + x % 10);
}
const int MOD = 1000000007;
int64 t[3],D;
vector<pair<int64,int64> > v;
int ans;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
int mul3(int a,int b,int c) {
return mul(mul(a,b),c);
}
void update(int &x,int y) {
x = inc(x,y);
}
void Solve() {
for(int i = 0 ; i < 3 ; ++i) read(t[i]);read(D);
for(int64 i = 0 ; i <= D ; ++i) {
for(int j = 0 ; j < 3 ; ++j) {
if(i && i < t[j]) v.pb(mp(i,t[j]));
if(t[j] - 1 - i > 0) v.pb(mp(t[j] - i - 1,t[j]));
}
}
sort(v.begin(),v.end(),[](pair<int64,int64> a,pair<int64,int64> b){return a.fi * b.se < b.fi * a.se;});
v.erase(unique(v.begin(),v.end()),v.end());
int64 a[3] = {0,0,0};
update(ans,mul3(min(t[0],D + 1),min(t[1],D + 1),min(t[2],D + 1)));
for(auto k : v) {
int64 b[3] = {a[0],a[1],a[2]};
for(int j = 0 ; j < 3 ; ++j) {
a[j] = t[j] * k.fi / k.se;
}
int64 d[3];
for(int j = 0 ; j < 3 ; ++j) {
d[j] = min(b[j] + D,t[j] - 1) - max(b[j] - D,0LL) + 1;
}
for(int j = 0 ; j < 3 ; ++j) {
if(a[j] + D < t[j]) {
int t = a[j] - b[j];
for(int h = 0 ; h < 3 ; ++h) {
if(h != j) t = mul(t,d[h]);
}
update(ans,t);
}
}
}
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
F - Three Gluttons
做atc总觉得自己是个智障,早点退役保平安
条件我都没分析出来。。。= =
就是认为我们把这个分成三个数字不同的序列,每个长度是\(N / 3\)
第\(t\)次吃要满足\(a_{1},a_{2},....a_{i_t},b_{1},b_{2},...b_{j_t}\)
中\(a_{i_t}\)和\(b_{j_t}\)只出现了一次
这样保证了两个序列里不会选重
然后第三个序列假如吃的是\(x_{1},x_{2}...x_{\frac{N}{3}}\)
我要满足\(x_{t}\)
在\(a_{1},a_{2},....a_{i_t},b_{1},b_{2},...b_{j_t}\)没有出现过
然后呢,如果我们找出一个满足条件的吃的三个序列,你会发现,这样第三种序列填数的方案,和我选了什么并没有关系!!!!!
然后设\(dp[i][j]\)表示考虑到第i个,已经填在c序列里的有j个
i没增加1,能填的数会多两个,直接dp就行
然后就是怎么求三个合法序列了
从后往前推,发现\(x_{t}\)不能填的数就是\(a_{1},a_{2},....a_{i_t},b_{1},b_{2},...b_{j_t}\)出现过的数,a,b,c的后\(n - t\)个
前缀和优化一下可以做到\(N^{3}\)
#include <bits/stdc++.h>
#define fi first
#define se second
#define pii pair<int,int>
#define mp make_pair
#define pb push_back
#define space putchar(‘ ‘)
#define enter putchar(‘\n‘)
#define MAXN 20000005
#define eps 1e-10
//#define ivorysi
using namespace std;
typedef long long int64;
typedef unsigned int u32;
typedef double db;
template<class T>
void read(T &res) {
res = 0;T f = 1;char c = getchar();
while(c < ‘0‘ || c > ‘9‘) {
if(c == ‘-‘) f = -1;
c = getchar();
}
while(c >= ‘0‘ && c <= ‘9‘) {
res = res * 10 + c - ‘0‘;
c = getchar();
}
res *= f;
}
template<class T>
void out(T x) {
if(x < 0) {x = -x;putchar(‘-‘);}
if(x >= 10) {
out(x / 10);
}
putchar(‘0‘ + x % 10);
}
const int MOD = 1000000007;
int inc(int a,int b) {
return a + b >= MOD ? a + b - MOD : a + b;
}
int mul(int a,int b) {
return 1LL * a * b % MOD;
}
void update(int &x,int y) {
x = inc(x,y);
}
int fpow(int x,int c) {
int res = 1,t = x;
while(c) {
if(c & 1) res = mul(res,t);
t = mul(t,t);
c >>= 1;
}
return res;
}
int dp[150][405],N,f[150][405][405],w,ans;
int a[405],b[405],fac[405],invfac[405];
bool visa[405],visb[405],vis[405][405];
int cnt[405][405],g[405];
int A(int n,int m) {
if(n < m) return 0;
return mul(fac[n],invfac[n - m]);
}
void Solve() {
read(N);
for(int i = 1 ; i <= N ; ++i) read(a[i]);
for(int i = 1 ; i <= N ; ++i) read(b[i]);
fac[0] = 1;
for(int i = 1 ; i <= N ; ++i) fac[i] = mul(fac[i - 1],i);
invfac[N] = fpow(fac[N],MOD - 2);
for(int i = N - 1 ; i >= 0 ; --i) invfac[i] = mul(invfac[i + 1],i + 1);
dp[1][2] = 1;
for(int i = 1 ; i < N / 3 ; ++i) {
for(int j = 0 ; j <= i * 2 ; ++j) {
for(int h = 0 ; h <= j; ++h) {
update(dp[i + 1][j + 2 - h],mul(A(j,h),dp[i][j]));
}
}
}
for(int j = 0 ; j <= (N / 3) * 2 ; ++j) update(w,mul(dp[N / 3][j],fac[j]));
for(int i = 1 ; i <= N ; ++i) {
visa[a[i]] = 1;
cnt[i][0] = i;
memset(visb,0,sizeof(visb));
for(int j = 1 ; j <= N ; ++j) {
visb[b[j]] = 1;
cnt[i][j] = cnt[i][j - 1];
if(!visa[b[j]]) cnt[i][j]++;
if(!visa[b[j]] && !visb[a[i]]) vis[i][j] = 1;
}
}
for(int t = N / 3 ; t >= 1 ; --t) {
memset(g,0,sizeof(g));
for(int i = N ; i >= 1 ; --i) {
int s = (t == N / 3);
for(int j = N ; j >= 1 ; --j) {
if(vis[i][j]) f[t][i][j] = mul(s,N - 3 * (N / 3 - t) - cnt[i][j]);
update(s,g[j]);
update(g[j],f[t + 1][i][j]);
}
}
}
for(int i = 1 ; i <= N ; ++i) {
for(int j = 1 ; j <= N ; ++j) {
update(ans,f[1][i][j]);
}
}
ans = mul(ans,w);
out(ans);enter;
}
int main() {
#ifdef ivorysi
freopen("f1.in","r",stdin);
#endif
Solve();
}
原文地址:https://www.cnblogs.com/ivorysi/p/10347107.html