红黑树(RB-tree)比AVL树的优势在哪?

1. 如果插入一个node引起了树的不平衡,AVL和RB-Tree都是最多只需要2次旋转操作,即两者都是O(1);但是在删除node引起树的不平衡时,最坏情况下,AVL需要维护从被删node到root这条路径上所有node的平衡性,因此需要旋转的量级O(logN),而RB-Tree最多只需3次旋转,只需要O(1)的复杂度。

2. 其次,AVL的结构相较RB-Tree来说更为平衡,在插入和删除node更容易引起Tree的unbalance,因此在大量数据需要插入或者删除时,AVL需要rebalance的频率会更高。因此,RB-Tree在需要大量插入和删除node的场景下,效率更高。自然,由于AVL高度平衡,因此AVL的search效率更高。

红黑树的查询性能略微逊色于AVL树,因为他比avl树会稍微不平衡最多一层,也就是说红黑树的查询性能只比相同内容的avl树最多多一次比较,但是,红黑树在插入和删除上完爆avl树,avl树每次插入删除会进行大量的平衡度计算,而红黑树为了维持红黑性质所做的红黑变换和旋转的开销,相较于avl树为了维持平衡的开销要小得多

原文地址:https://www.cnblogs.com/moxiaotao/p/10861345.html

时间: 2024-10-12 21:45:14

红黑树(RB-tree)比AVL树的优势在哪?的相关文章

二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree)的比较

http://www.iteye.com/topic/614070 此少侠总结的特棒,直接收藏了. 我们这个专题介绍的动态查找树主要有: 二叉查找树(BST),平衡二叉查找树(AVL),红黑树(RBT),B~/B+树(B-tree).这四种树都具备下面几个优势: (1) 都是动态结构.在删除,插入操作的时候,都不需要彻底重建原始的索引树.最多就是执行一定量的旋转,变色操作来有限的改变树的形态.而这些操作所付出的代价都远远小于重建一棵树.这一优势在<查找结构专题(1):静态查找结构概论 >中讲到

[数据结构]二叉搜索树(BST) VS 平衡二叉排序树(AVL) VS B树(平衡多路搜索树) VS B+树 VS 红黑树(平衡二叉B树)

1 二叉排序树/二叉查找树/Binary Sort Tree 1种对排序和查找都很有用的特殊二叉树 叉排序树的弊端的解决方案:平衡二叉树 二叉排序树必须满足的3条性质(或是具有如下特征的二叉树) 若它的左子树不为空,则:左子树上所有结点的值< 它根结点的值 若它的右子树不为空,则:右子树上所有结点的值 > 它根结点的值 它的左子树.右子树也分别为二叉排序树(递归性) (按照如上定义,即: 1 无键值相等的结点 2 中序遍历一颗二叉树时,可得一个结点值递增的有序序列) 2 平衡二叉排序树/Bal

平衡二叉树(Balanced Binary Tree&#160;或&#160;Height-Balanced Tree)又称AVL树

平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树 (a)和(b)都是排序二叉树,但是查找(b)的93节点就需要查找6次,查找(a)的93节点就需要查找3次,所以(b)的效率不高. 平衡二叉树(Balanced Binary Tree 或 Height-Balanced Tree)又称AVL树.它或者是一颗空树,或者是具有下列性质的二叉树:它的左子树和右子树的深度只差的绝对值不超过1.若将二叉树上节点的平衡因子BF(Balance F

数据结构中常见的树(BST二叉搜索树、AVL平衡二叉树、RBT红黑树、B-树、B+树、B*树)

树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: BST树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中: 如果BST树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树 的搜索性能逼近二分查找:但它比连续内存空间的二分查找的优点是,改变BST树结构 插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销: 如:

[转]SGI STL 红黑树(Red-Black Tree)源代码分析

STL提供了许多好用的数据结构与算法,使我们不必为做许许多多的重复劳动.STL里实现了一个树结构-Red-Black Tree,它也是STL里唯一实现的一个树状数据结构,并且它是map, multimap,set,multiset的底层实现,如果学会了Red-Black Tree,那么对我们高效的运用STL是很有帮助的. 1. 什么是红黑树 红黑树是二叉查找树的一种,由于它能够保证树的高度比较底,所以是一种性能较好的查找树.它需要满足以下几条性质: 1.每个结点或是红的,或是黑的 2.根结点是黑

手撸红黑树-Red-Black Tree 入门

一.学习红黑树前的准备: 熟悉基础数据结构 了解二叉树概念 二.红黑树的规则和规则分析: 根节点是黑色的 所有叶子节点(Null)是黑色的,一般会认定节点下空节点全部为黑色 如果节点为红色,那么子节点全部为黑色 从某一节点出发,到达叶子节点的所有分支上,黑色节点的数量相同 由规则4引出的一个定义,从根节点到叶子节点的黑色节点数量成为 树的黑色高度.我们会发现由于红色节点下全部为黑色节点,那么最极端的情况就是,根节点出发,左子树全部为黑色节点,右子树为红色-黑色轮换,这样设想下不难发现,树的最长路

【转】B树、B-树、B+树、B*树、红黑树、 二叉排序树、trie树Double Array 字典查找树简介

B  树 即二叉搜索树: 1.所有非叶子结点至多拥有两个儿子(Left和Right): 2.所有结点存储一个关键字: 3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树: 如: B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中:否则,如果查询关键字比结点关键字小,就进入左儿子:如果比结点关键字大,就进入右儿子:如果左儿子或右儿子的指针为空,则报告找不到相应的关键字: 如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性

数据结构-红黑树(Red-Black Tree)的C++实现模板

红黑树的实现还真不简单,各种染色旋转足足折腾了笔者几天.. 不过收获也是巨大的.笔者现在终于明白为啥二叉搜索树这么重要了,确实很有用. 下面上代码. 细心的朋友可能会觉得似乎少了那么几个接口,没错,因为 Precessor(求前驱) / Successor(求后继) / getMaximum (求树中最大值)/ getMinimum(求树中最小值)/ Inorder Traversal(中序遍历)/ Postorder Traversal(后序遍历) 这些操作都可以直接用笔者二叉搜索树(BST)

[Data Structure] 红黑树( Red-Black Tree ) - 笔记

1.  红黑树属性:根到叶子的路径中,最长路径不大于最短路径的两倍. 2. 红黑树是一个二叉搜索树,并且有 a. 每个节点除了有左.右.父节点的属性外,还有颜色属性,红色或者黑色. b. ( 根属性 ) 红黑树的根只能是黑色 c. ( 红色属性 ) 红色节点的子节点只能是黑色 d. ( 黑色属性 ) 从给定的节点到其后代叶子节点的每一条路径上,出现的黑色节点数目一样.其中,从某个节点到其后代叶子节点的路径上出现的黑色节点数,被称为该节点的黑高度( black-height ). 3. 红黑树上的