面试必备之悲观锁与乐观锁

悲观锁

总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁(共享资源每次只给一个线程使用,其它线程阻塞,用完后再把资源转让给其它线程)。传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。Java中synchronized和ReentrantLock等独占锁就是悲观锁思想的实现。

乐观锁

总是假设最好的情况,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版本号机制和CAS算法实现。乐观锁适用于多读的应用类型,这样可以提高吞吐量,像数据库提供的类似于write_condition机制,其实都是提供的乐观锁。在Java中java.util.concurrent.atomic包下面的原子变量类就是使用了乐观锁的一种实现方式CAS实现的。

两种锁的使用场景

从上面对两种锁的介绍,我们知道两种锁各有优缺点,不可认为一种好于另一种,像乐观锁适用于写比较少的情况下(多读场景),即冲突真的很少发生的时候,这样可以省去了锁的开销,加大了系统的整个吞吐量。但如果是多写的情况,一般会经常产生冲突,这就会导致上层应用会不断的进行retry,这样反倒是降低了性能,所以一般多写的场景下用悲观锁就比较合适。

乐观锁常见的两种实现方式

乐观锁一般会使用版本号机制或CAS算法实现。

1. 版本号机制

一般是在数据表中加上一个数据版本号version字段,表示数据被修改的次数,当数据被修改时,version值会加一。当线程A要更新数据值时,在读取数据的同时也会读取version值,在提交更新时,若刚才读取到的version值为当前数据库中的version值相等时才更新,否则重试更新操作,直到更新成功。

举一个简单的例子: 假设数据库中帐户信息表中有一个 version 字段,当前值为 1 ;而当前帐户余额字段( balance )为 ¥100 。

  • 操作员 A 此时将其读出(version=1),并从其帐户余额中扣除¥50(¥100 - ¥50)。
  • 在操作员 A 操作的过程中,操作员B 也读入此用户信息( version=1 ),并从其帐户余额中扣除 ¥20 ( ¥100-¥20 )。
  • 操作员 A 完成了修改工作,将数据版本号加一( version=2 ),连同帐户扣除后余额( balance=¥50 ),提交至数据库更新,此时由于提交数据版本大于数据库记录当前版本,数据被更新,数据库记录 version 更新为 2 。
  • 操作员 B 完成了操作,也将版本号加一( version=2 )试图向数据库提交数据( balance=¥80 ),但此时比对数据库记录版本时发现,操作员 B 提交的数据版本号为 2 ,数据库记录当前版本也为 2 ,不满足 “ 提交版本必须大于记录当前版本才能执行更新 “ 的乐观锁策略,因此,操作员 B 的提交被驳回。
    这样,就避免了操作员 B 用基于 version=1 的旧数据修改的结果覆盖操作员A 的操作结果的可能。
2. CAS算法

compare and swap(比较与交换),是一种有名的无锁算法。无锁编程,即不使用锁的情况下实现多线程之间的变量同步,也就是在没有线程被阻塞的情况下实现变量的同步,所以也叫非阻塞同步(Non-blocking Synchronization)。CAS算法涉及到三个操作数

  • 需要读写的内存值 V
  • 进行比较的值 A
  • 拟写入的新值 B

当且仅当 V 的值等于 A时,CAS通过原子方式用新值B来更新V的值,否则不会执行任何操作(比较和替换是一个原子操作)。一般情况下是一个自旋操作,即不断的重试。

乐观锁的缺点

ABA 问题是乐观锁一个常见的问题

1 ABA 问题

如果一个变量V初次读取的时候是A值,并且在准备赋值的时候检查到它仍然是A值,那我们就能说明它的值没有被其他线程修改过了吗?很明显是不能的,因为在这段时间它的值可能被改为其他值,然后又改回A,那CAS操作就会误认为它从来没有被修改过。这个问题被称为CAS操作的 "ABA"问题。

JDK 1.5 以后的 AtomicStampedReference 类就提供了此种能力,其中的 compareAndSet 方法就是首先检查当前引用是否等于预期引用,并且当前标志是否等于预期标志,如果全部相等,则以原子方式将该引用和该标志的值设置为给定的更新值。

2 循环时间长开销大

自旋CAS(也就是不成功就一直循环执行直到成功)如果长时间不成功,会给CPU带来非常大的执行开销。 如果JVM能支持处理器提供的pause指令那么效率会有一定的提升,pause指令有两个作用,第一它可以延迟流水线执行指令(de-pipeline),使CPU不会消耗过多的执行资源,延迟的时间取决于具体实现的版本,在一些处理器上延迟时间是零。第二它可以避免在退出循环的时候因内存顺序冲突(memory order violation)而引起CPU流水线被清空(CPU pipeline flush),从而提高CPU的执行效率。

3 只能保证一个共享变量的原子操作

CAS 只对单个共享变量有效,当操作涉及跨多个共享变量时 CAS 无效。但是从 JDK 1.5开始,提供了AtomicReference类来保证引用对象之间的原子性,你可以把多个变量放在一个对象里来进行 CAS 操作.所以我们可以使用锁或者利用AtomicReference类把多个共享变量合并成一个共享变量来操作。

CAS与synchronized的使用情景

  • 简单的来说CAS适用于写比较少的情况下(多读场景,冲突一般较少),
  • synchronized适用于写比较多的情况下(多写场景,冲突一般较多)
  • 对于资源竞争较少(线程冲突较轻)的情况,使用synchronized同步锁进行线程阻塞和唤醒切换以及用户态内核态间的切换操作额外浪费消耗cpu资源;而CAS基于硬件实现,不需要进入内核,不需要切换线程,操作自旋几率较少,因此可以获得更高的性能。
  • 对于资源竞争严重(线程冲突严重)的情况,CAS自旋的概率会比较大,从而浪费更多的CPU资源,效率低于synchronized。

补充: Java并发编程这个领域中synchronized关键字一直都是元老级的角色,很久之前很多人都会称它为 “重量级锁” 。但是,在JavaSE 1.6之后进行了主要包括为了减少获得锁和释放锁带来的性能消耗而引入的 偏向锁 和 轻量级锁 以及其它各种优化之后变得在某些情况下并不是那么重了。synchronized的底层实现主要依靠 Lock-Free 的队列,基本思路是 自旋后阻塞,竞争切换后继续竞争锁,稍微牺牲了公平性,但获得了高吞吐量。在线程冲突较少的情况下,可以获得和CAS类似的性能;而线程冲突严重的情况下,性能远高于CAS。



面试必备之悲观锁与乐观锁

原文地址:https://blog.51cto.com/14230003/2385473

时间: 2024-10-24 03:10:52

面试必备之悲观锁与乐观锁的相关文章

面试必问系列:谈谈乐观锁与悲观锁!

前言 乐观锁和悲观锁问题,是出现频率比较高的面试题.本文将由浅入深,逐步介绍它们的基本概念.实现方式(含实例).适用场景,以及可能遇到的面试官追问,希望能够帮助你打动面试官. 目录 一.基本概念二.实现方式(含实例)三.优缺点和适用场景四.面试官追问:乐观锁加锁吗?五.面试官追问:CAS有哪些缺点?六.总结 一.基本概念 乐观锁和悲观锁是两种思想,用于解决并发场景下的数据竞争问题. 乐观锁:乐观锁在操作数据时非常乐观,认为别人不会同时修改数据.因此乐观锁不会上锁,只是在执行更新的时候判断一下在此

第36讲 谈谈MySQL支持的事务隔离级别,以及悲观锁和乐观锁的原理和应用场景

在日常开发中,尤其是业务开发,少不了利用 Java 对数据库进行基本的增删改查等数据操作,这也是 Java 工程师的必备技能之一.做好数据操作,不仅仅需要对 Java 语言相关框架的掌握,更需要对各种数据库自身体系结构的理解.今天这一讲,作为补充 Java 面试考察知识点的完整性,关于数据库的应用和细节还需要在实践中深入学习.今天我要问你的问题是,谈谈 MySQL 支持的事务隔离级别,以及悲观锁和乐观锁的原理和应用场景?典型回答所谓隔离级别(Isolation Level),就是在数据库事务中,

Oracle数据库悲观锁与乐观锁详解

数据的锁定分为两种方法,第一种叫做悲观锁,第二种叫做乐观锁.什么叫悲观锁呢,悲观锁顾名思义,就是对数据的冲突采取一种悲观的态度,也就是说假设数据肯定会冲突,所以在数据开始读取的时候就把数据锁定住.而乐观锁就是认为数据一般情况下不会造成冲突,所以在数据进行提交更新的时候,才会正式对数据的冲突与否进行检测,如果发现冲突了,则让用户返回错误的信息,让用户决定如何去做. 先从悲观锁开始说.在SqlServer等其余很多数据库中,数据的锁定通常采用页级锁的方式,也就是说对一张表内的数据是一种串行化的更新插

数据库中的悲观锁和乐观锁详解

数据中的锁分为两类:悲观锁和乐观锁,锁还有表级锁.行级锁 表级锁例如: SELECT * FROM table WITH (HOLDLOCK) 其他事务可以读取表,但不能更新删除 SELECT * FROM table WITH (TABLOCKX) 其他事务不能读取表,更新和删除 行级锁例如: select * from table_name where id = 1 for update; 悲观锁(Pressimistic Locking) 对数据被外界(包括本系统当前的其他事务,以及来自

025 hibernate悲观锁、乐观锁

Hibernate谈到悲观锁.乐观锁,就要谈到数据库的并发问题,数据库的隔离级别越高它的并发性就越差 并发性:当前系统进行了序列化后,当前读取数据后,别人查询不了,看不了.称为并发性不好 数据库隔离级别:见前面章级 025-1悲观锁: 悲观锁:具有排他性(我锁住当前数据后,别人看到不此数据) 悲观锁一般由数据机制来做到的. 悲观锁的实现 通常依赖于数据库机制,在整修过程中将数据锁定,其它任何用户都不能读取或修改(如:必需我修改完之后,别人才可以修改) 悲观锁的适用场景: 悲观锁一般适合短事务比较

悲观锁及乐观锁

1.Volatile:http://www.cnblogs.com/aigongsi/archive/2012/04/01/2429166.html 2.悲观锁与乐观锁:http://www.cnblogs.com/softidea/p/5309312.html 3.乐观锁的一种实现方式:http://www.tuicool.com/articles/yiyy6bI

mysql-mysql悲观锁和乐观锁

1.mysql的四种事务隔离级别 I. 对于同时运行多个事务,当这些事务访问数据库中的相同数据时,如果没有采取必要的隔离机制,就会导致各种并发问题. (1)脏读: 对于两个事物 T1, T2, T1 读取了已经被 T2 更新但还没有被提交的字段. 之后, 若 T2 回滚, T1读取的内容就是临时且无效的. (2)不可重复读: 对于两个事物 T1, T2, T1 读取了一个字段, 然后 T2 更新了该字段. 之后, T1再次读取同一个字段, 值就不同了. (3)幻读: 对于两个事物 T1, T2,

数据库事务的悲观锁和乐观锁

转载出处:http://www.hollischuang.com/archives/934 在数据库的锁机制中介绍过,数据库管理系统(DBMS)中的并发控制的任务是确保在多个事务同时存取数据库中同一数据时不破坏事务的隔离性和统一性以及数据库的统一性. 乐观并发控制(乐观锁)和悲观并发控制(悲观锁)是并发控制主要采用的技术手段. 无论是悲观锁还是乐观锁,都是人们定义出来的概念,可以认为是一种思想.其实不仅仅是关系型数据库系统中有乐观锁和悲观锁的概念,像memcache.hibernate.tair

Java并发问题--乐观锁与悲观锁以及乐观锁的一种实现方式-CAS

首先介绍一些乐观锁与悲观锁: 悲观锁:总是假设最坏的情况,每次去拿数据的时候都认为别人会修改,所以每次在拿数据的时候都会上锁,这样别人想拿这个数据就会阻塞直到它拿到锁.传统的关系型数据库里边就用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁.再比如Java里面的同步原语synchronized关键字的实现也是悲观锁. 乐观锁:顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁,但是在更新的时候会判断一下在此期间别人有没有去更新这个数据,可以使用版